cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381275 Expansion of e.g.f. exp(x * cos(2*x)).

This page as a plain text file.
%I A381275 #9 Feb 19 2025 03:36:48
%S A381275 1,1,1,-11,-47,-39,1681,10893,-13215,-851471,-5515679,34375397,
%T A381275 887687857,3982645577,-85350572943,-1466457337859,-659043831871,
%U A381275 270733024430305,3181606182917569,-24432689736388395,-1076204061663657839,-6834631528147762247,221729710998069153617
%N A381275 Expansion of e.g.f. exp(x * cos(2*x)).
%C A381275 As stated in the comment of A185951, A185951(n,0) = 0^n.
%F A381275 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} (-4)^k * (2*k+1) * binomial(n-1,2*k) * a(n-2*k-1).
%F A381275 a(n) = Sum_{k=0..n} (2*i)^(n-k) * A185951(n,k), where i is the imaginary unit.
%o A381275 (PARI) a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
%o A381275 a(n) = sum(k=0, n, (2*I)^(n-k)*a185951(n, k));
%Y A381275 Cf. A009189, A381276.
%Y A381275 Cf. A185951.
%K A381275 sign
%O A381275 0,4
%A A381275 _Seiichi Manyama_, Feb 18 2025