A381287 a(n) is the smallest nonnegative number congruent to k modulo prime(k)^(n-k+1) for k=1..n.
1, 5, 353, 65153, 119966753, 3050486978753, 563678198162618753, 15413934869729743026218753, 1710386933322832904060816574218753, 14712401204424400291787297607394206774218753, 5027982881016562571248237683551040219315980699574218753, 5488604004979149030407333271782173318791620565366546226763574218753
Offset: 1
Keywords
Examples
For n=3, a(3)=353 since 353 is the smallest nonnegative integer x satisfying: x == 1 (mod 2^3), x == 2 (mod 3^2), x == 3 (mod 5^1).
Links
- Steven Lu, Table of n, a(n) for n = 1..37
Programs
-
Mathematica
ToString[Table[ChineseRemainder[Range[n], (Prime /@ Range[n])^Range[n, 1, -1]], {n, 12}]]
Comments