cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381299 Irregular triangular array read by rows. T(n,k) is the number of ordered set partitions of [n] with exactly k descents, n>=0, 0<=k<=binomial(n,2).

This page as a plain text file.
%I A381299 #57 Aug 23 2025 16:42:12
%S A381299 1,1,2,1,4,4,4,1,8,12,18,18,12,6,1,16,32,60,84,100,92,76,48,24,8,1,32,
%T A381299 80,176,300,448,572,650,658,596,478,334,206,102,40,10,1,64,192,480,
%U A381299 944,1632,2476,3428,4300,5008,5372,5356,4936,4220,3316,2392,1556,904,456,188,60,12,1
%N A381299 Irregular triangular array read by rows.  T(n,k) is the number of ordered set partitions of [n] with exactly k descents, n>=0, 0<=k<=binomial(n,2).
%C A381299 Let p = ({b_1},{b_2},...,{b_m}) be an ordered set partition of [n] into m blocks for some m, 1<=m<=n. A descent in p is an ordered pair (x,y) in [n]X[n] such that x is in b_i, y is in b_j, i<j, and x>y.
%C A381299 T(n,binomial(n,2)) = 1 (counts the ordered set partition ({n},{n-1},...,{2},{1})).
%C A381299 For n>=1, T(n,0) = 2^(n-1).
%C A381299 Sum_{k>=0} T(n,k)*2^k = A289545(n).
%C A381299 Sum_{k>=0} T(n,k)*3^k = A347841(n).
%C A381299 Sum_{k>=0} T(n,k)*4^k = A347842(n).
%C A381299 Sum_{k>=0} T(n,k)*5^k = A347843(n).
%C A381299 Sum_{k>=0} T(n,k)*6^k = A385408(n).
%C A381299 Sum_{k>=0} T(n,k)*7^k = A347844(n).
%C A381299 Sum_{k>=0} T(n,k)*8^k = A347845(n).
%C A381299 Sum_{k>=0} T(n,k)*9^k = A347846(n).
%C A381299 T(n,k) is the number of preferential arrangements of n labeled elements with exactly k inversions. For example, there 4 preferential rearrangements of length 3 with 1 inversion: 132, 213, 212, 131. - _Kyle Celano_, Aug 18 2025
%H A381299 Alois P. Heinz, <a href="/A381299/b381299.txt">Rows n = 0..50, flattened</a>
%H A381299 Kassie Archer, Ira M. Gessel, Christina Graves, and Xuming Liang, <a href="https://arxiv.org/abs/1909.01550">Counting acyclic and strong digraphs by descents</a>, arXiv:1909.01550 [math.CO], 2019-2020.
%H A381299 Kyle Celano, Jennifer Elder, Kimberly P. Hadaway, Pamela E. Harris, Amanda Priestley, and Gabe Udell, <a href="https://arxiv.org/abs/2508.11587">Inversions in parking functions</a>, arXiv:2508.11587 [math.CO], 2025. See Theorem 1.
%F A381299 Sum_{k=0..binomial(n,2)} k * T(n,k) = A240796(n). - _Alois P. Heinz_, Feb 20 2025
%F A381299 T(n,k) is the coefficient of q^k in n!_q times the coefficient of x^n in 1/(1- x - x^2/2!_q - x^3/3!_q - ...), where n!_q= 1*(1+q)*(1+q+q^2)*...*(1+q+...+q^(n-1)). - _Ira M. Gessel_, Jun 24 2025
%F A381299 T(n,k) = Sum_{w} 2^(asc(w)), where w runs through the set of permutations with k inversions and asc(w) is the number of ascents of w. - _Kyle Celano_, Aug 18 2025
%e A381299 Triangle T(n,k) begins:
%e A381299   1;
%e A381299   1;
%e A381299   2,  1;
%e A381299   4,  4,  4,  1;
%e A381299   8, 12, 18, 18,  12,  6,  1;
%e A381299  16, 32, 60, 84, 100, 92, 76, 48, 24, 8, 1;
%e A381299  ...
%p A381299 b:= proc(o, u, t) option remember; expand(`if`(u+o=0, 1, `if`(t=1,
%p A381299       b(u+o, 0$2), 0)+add(x^(u+j-1)*b(o-j, u+j-1, 1), j=1..o)))
%p A381299     end:
%p A381299 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
%p A381299 seq(T(n), n=0..8);  # _Alois P. Heinz_, Feb 21 2025
%t A381299 nn = 7; B[n_] := FunctionExpand[QFactorial[n, u]]; e[z_] := Sum[z^n/B[n], {n, 0, nn}];Map[CoefficientList[#, u] &, Table[B[n], {n, 0, nn}] CoefficientList[Series[1/(1 -(e[z] - 1)), {z, 0, nn}], z]] // Grid
%Y A381299 Columns k=0-2 give: A011782, A001787(n-1) for n>=1, 2*A268586.
%Y A381299 Cf. A000670 (row sums), A008302 (the cases where each block has size 1).
%Y A381299 Cf. A125810, A161680, A240796, A289545, A347841, A347842, A347843, A347844, A347845, A347846, A385408.
%K A381299 nonn,tabf,changed
%O A381299 0,3
%A A381299 _Geoffrey Critzer_, Feb 19 2025