A381314 Powerful numbers that have a single exponent in their prime factorization that equals 2.
4, 9, 25, 49, 72, 108, 121, 144, 169, 200, 288, 289, 324, 361, 392, 400, 500, 529, 576, 675, 784, 800, 841, 961, 968, 972, 1125, 1152, 1323, 1352, 1369, 1372, 1568, 1600, 1681, 1849, 1936, 2025, 2209, 2304, 2312, 2500, 2704, 2809, 2888, 2916, 3087, 3136, 3200
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
With[{max = 3200}, Select[Union@ Flatten@ Table[i^2 * j^3, {j, 1, max^(1/3)}, {i, 1, Sqrt[max/j^3]}], Count[FactorInteger[#][[;; , 2]], 2] == 1 &]]
-
PARI
isok(k) = if(k == 1, 0, my(e = factor(k)[, 2]); vecmin(e) > 1 && #select(x -> (x==2), e) == 1);
Formula
Sum_{n>=1} 1/a(n) = Sum_{p prime}((p-1)/(p^3-p^2+1)) * Product_{p prime} (1 + 1/(p^2*(p-1))) = 0.53045141423939736076... .
Comments