cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381327 a(n) is the number of nonnegative integers that can be represented by n segments in the Cistercian numeral system.

This page as a plain text file.
%I A381327 #4 Feb 23 2025 11:21:15
%S A381327 1,24,214,910,2099,2858,2415,1190,289
%N A381327 a(n) is the number of nonnegative integers that can be represented by n segments in the Cistercian numeral system.
%C A381327 The sequence is finite because the numeral system of Cistercian monks allows us to represent the numbers from 0 to 9999.
%H A381327 Daniel Carter Beard, <a href="https://archive.org/details/americanboysbook00bear5/page/92/mode/2up">The American boys' book of signs, signals and symbols</a>. New York Public Library. Philadelphia: Lippincott. p. 92, 1918.
%H A381327 dCode, <a href="https://www.dcode.fr/cistercian-numbers">Cistercian Monk Numerals</a>
%H A381327 Lauron William De Laurence, <a href="https://archive.org/details/greatbookmagica00laurgoog/page/n190/mode/2up">The Great Book of Magical Art, Hindu Magic and East Indian Occultism</a>. Chicago: De Laurence Co. p. 174, 1915.
%H A381327 Agrippa von Nettesheim and Heinrich Cornelius, <a href="https://archive.org/details/DeOccultaPhilosophiaJungCollection1533/page/n160/mode/1up">De Occulta Philosophia</a>, pp. CXLII - CXLIII, 1533 (in Latin).
%H A381327 Wikipedia, <a href="https://en.wikipedia.org/wiki/Cistercian_numerals">Cistercian numerals</a>.
%F A381327 Sum_{k=1..9} a(k) = 10^4.
%t A381327 SN:={"0"->1, "1"->2, "2"->2, "3"->2, "4"->2, "5"->3, "6"->2, "7"->3, "8"->3, "9"->4}; OI:={11, 15, 17, 19, 22, 28, 29, 51, 55, 57, 59, 71, 75, 77, 79, 82, 88, 89, 91, 92, 95, 97, 98, 99}; a[k_]:=Count[Table[(Characters[IntegerString[Floor[n/100]]]/. SN//Total)-Length[Characters[IntegerString[Floor[n/100]]]]+1-If[MemberQ[OI, Floor[n/100]], 1, 0]-Boole[Floor[n/100]==99]+(Characters[IntegerString[Mod[n, 100]]]/. SN//Total)-Length[Characters[IntegerString[Mod[n, 100]]]]+1-If[MemberQ[OI, Mod[n, 100]], 1, 0]-Boole[Mod[n, 100]==99]-1, {n, 0, 9999}],k]; Array[a,9]
%Y A381327 Cf. A341737.
%K A381327 nonn,base,fini,full
%O A381327 1,2
%A A381327 _Stefano Spezia_, Feb 20 2025