A381331 a(1) = a(2) = 1; for n > 2, a(n) = floor((n - 2)*a(n - 1)/a(n - 2)) + GCD(n - 2, a(n - 2)).
1, 1, 2, 5, 8, 7, 5, 5, 8, 13, 15, 12, 9, 21, 31, 27, 14, 9, 11, 31, 54, 35, 16, 11, 16, 35, 55, 41, 21, 15, 21, 57, 85, 48, 19, 15, 28, 70, 93, 52, 24, 22, 38, 74, 84, 51, 30, 28, 44, 79, 88, 56, 33, 34, 55, 89, 144, 91, 39, 25, 38, 96, 155, 102, 42, 28, 44, 105, 160, 104
Offset: 1
Examples
a(1) = 1 a(2) = 1 a(3) = floor(1*1/1) + GCD(1,1) = 2 a(4) = floor(2*2/1) + GCD(2,1) = 5 a(5) = floor(3*5/2) + GCD(3,2) = 8 and so on.
Links
- Ray Chandler, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,-1,1,-1,1,0,0,0,0,0,0,1,-1,1,-1,1,-1).
Programs
-
Mathematica
a[n_] := a[n] = If[n < 3, 1, Floor[(n-2)*a[n-1]/a[n-2]] + GCD[n-2, a[n-2]]]; Array[a, 70] (* Amiram Eldar, Feb 20 2025 *)
Formula
For n >= 499:
if n mod 6 = 0, a(n) = 2*n - 1 + 2*((n/2) mod 2).
if n mod 6 = 1, a(n) = n + 2.
if n mod 6 = 2, a(n) = (n + 2)/2.
if n mod 6 = 3, a(n) = (n - 1)/2.
if n mod 6 = 4, a(n) = n - 2 - (n/2) mod 2.
if n mod 6 = 5, a(n) = 2*n - 6 + 3*((n + 1)/2 mod 2).
Comments