A381334 Smallest integer that is the sum of a prime and the square of a prime in exactly n ways.
6, 11, 56, 176, 188, 362, 398, 668, 1568, 1448, 1592, 2390, 3372, 3632, 4532, 6888, 6342, 8582, 6368, 10632, 13002, 12920, 12942, 19502, 23168, 26990, 26292, 25038, 25472, 33648, 32238, 41048, 40640, 39800, 53360, 64998, 77348, 74718, 72740, 81542, 89682, 82880
Offset: 1
Keywords
Examples
a(1) = 6 as 6 = 2 + 2^2. a(2) = 11 as 11 = 7 + 2^2 = 2 + 3^2. a(3) = 56 as 56 = 47 + 3^2 = 31 + 5^2 = 7 + 7^2. a(4) = 176 as 176 = 167 + 3^2 = 151 + 5^2 = 127 + 7^2 = 7 + 13^2. a(5) = 188 as 188 = 179 + 3^2 = 163 + 5^2 = 139 + 7^2 = 67 + 11^2 = 19 + 13^2. a(6) = 362 as 362 = 353 + 3^2 = 337 + 5^2 = 313 + 7^2 = 241 + 11^2 = 193 + 13^2 = 73 + 17^2. a(9) = 1568 as 1568 = 1559 + 3^2 = 1543 + 5^2 = 1447 + 11^2 = 1399 + 13^2 = 1279 + 17^2 = 1039 + 23^2 = 727 + 29^2 = 607 + 31^2 = 199 + 37^2. Note that a(9) > A381333(9) = 1448 as 1448 has 10 decompositions: 1448 = 1439 + 3^2 = 1423 + 5^2 = 1399 + 7^2 = 1327 + 11^2 = 1279 + 13^2 = 1087 + 19^2 = 919 + 23^2 = 607 + 29^2 = 487 + 31^2 = 79 + 37^2.
Links
- Robert Israel, Table of n, a(n) for n = 1..564
Programs
-
Maple
N:= 10^6: # for a(1)..a(k) where a(k+1) is the first term > N P:= select(isprime,[2,seq(i,i=3..N,2)]): W:= Vector(1..N/2,datatype=integer[4]): for i from 2 while P[i]^2 < N do m:= ListTools:-BinaryPlace(P, N - P[i]^2); J:= (P[2..m] +~ P[i]^2)/~ 2; W[J]:= W[J] +~ 1; od: imax:= max[index](W): R:= Vector(W[imax]): R[1]:= 6: R[2]:= 11: for i from 1 to imax do r:= W[i]; if r > 0 and R[r] = 0 then R[r]:= 2*i fi; od: if member(0,R,'i') then convert(R[1..i-1],list) else convert(R,list) fi; # Robert Israel, Feb 24 2025
-
Python
from itertools import count from math import isqrt from sympy import isprime, primerange def A381334(n): return next(filter(lambda m:sum(1 for p in primerange(isqrt(m)+1) if isprime(m-p**2))==n,count(1)))
Comments