cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381334 Smallest integer that is the sum of a prime and the square of a prime in exactly n ways.

Original entry on oeis.org

6, 11, 56, 176, 188, 362, 398, 668, 1568, 1448, 1592, 2390, 3372, 3632, 4532, 6888, 6342, 8582, 6368, 10632, 13002, 12920, 12942, 19502, 23168, 26990, 26292, 25038, 25472, 33648, 32238, 41048, 40640, 39800, 53360, 64998, 77348, 74718, 72740, 81542, 89682, 82880
Offset: 1

Views

Author

Chai Wah Wu, Feb 20 2025

Keywords

Comments

Subsequence of A081053. All terms are even except for a(2) = 11.
a(n) >= A381333(n).

Examples

			a(1) = 6 as 6 = 2 + 2^2.
a(2) = 11 as 11 = 7 + 2^2 = 2 + 3^2.
a(3) = 56 as 56 = 47 + 3^2 = 31 + 5^2 = 7 + 7^2.
a(4) = 176 as 176 = 167 + 3^2 = 151 + 5^2 = 127 + 7^2 = 7 + 13^2.
a(5) = 188 as 188 = 179 + 3^2 = 163 + 5^2 = 139 + 7^2 = 67 + 11^2 = 19 + 13^2.
a(6) = 362 as 362 = 353 + 3^2 = 337 + 5^2 = 313 + 7^2 = 241 + 11^2 = 193 + 13^2 = 73 + 17^2.
a(9) = 1568 as 1568 = 1559 + 3^2 = 1543 + 5^2 = 1447 + 11^2 = 1399 + 13^2 = 1279 + 17^2 = 1039 + 23^2 = 727 + 29^2 = 607 + 31^2 = 199 + 37^2.
Note that a(9) > A381333(9) = 1448 as 1448 has 10 decompositions: 1448 = 1439 + 3^2 = 1423 + 5^2 = 1399 + 7^2 = 1327 + 11^2 = 1279 + 13^2 = 1087 + 19^2 = 919 + 23^2 = 607 + 29^2 = 487 + 31^2 = 79 + 37^2.
		

Crossrefs

Programs

  • Maple
    N:= 10^6: # for a(1)..a(k) where a(k+1) is the first term > N
    P:= select(isprime,[2,seq(i,i=3..N,2)]):
    W:= Vector(1..N/2,datatype=integer[4]):
    for i from 2 while P[i]^2 < N do
    m:= ListTools:-BinaryPlace(P, N - P[i]^2);
    J:= (P[2..m] +~ P[i]^2)/~ 2;
      W[J]:= W[J] +~ 1;
    od:
    imax:= max[index](W):
    R:= Vector(W[imax]):
    R[1]:= 6: R[2]:= 11:
    for i from 1 to imax do
    r:= W[i];
    if r > 0 and R[r] = 0 then R[r]:= 2*i fi;
    od:
    if member(0,R,'i') then convert(R[1..i-1],list) else convert(R,list) fi; # Robert Israel, Feb 24 2025
  • Python
    from itertools import count
    from math import isqrt
    from sympy import isprime, primerange
    def A381334(n): return next(filter(lambda m:sum(1 for p in primerange(isqrt(m)+1) if isprime(m-p**2))==n,count(1)))