cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A381337 a(n) is the smallest c >= A381336(n) + n for which a nondegenerate integer-sided triangle (A381336(n), A381336(n) + n, c) with an integer area exists.

Original entry on oeis.org

5, 10, 15, 20, 25, 30, 13, 20, 15, 50, 25, 60, 41, 26, 75, 40, 25, 30, 29, 50, 35, 26, 37, 30, 39, 52, 45, 52, 109, 82, 41, 80, 55, 50, 65, 60, 61, 58, 61, 68, 73, 70, 65, 52, 75, 52, 53, 60, 61, 78, 75, 104, 203, 90, 75, 70, 87, 68, 101, 150, 89, 82, 91, 80, 117
Offset: 1

Views

Author

Felix Huber, Mar 18 2025

Keywords

Examples

			a(5) = 25 because A381336(n) = 12 and the nondegenerate integer-sided triangle (12, 12 + 5, 25 >= 12 + 5) has an integer area (90), and there is no smaller c > 12 + 5 than 25 that satisfies this condition.
		

Crossrefs

Cf. A381336.

Programs

  • Maple
    A381337:=proc(n)
        local k,c,s;
        for k do
            for c from k+n to 2*k+n-1 do
                s:=(n+2*k+c)/2;
                if issqr(s*(s-k)*(s-k-n)*(s-c)) then
                    return c
                fi
            od
        od;
    end proc;
    seq(A381337(n),n=1..65);

A382297 Indices of right triangles in A381337.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 12, 14, 17, 23, 28, 31, 34, 35, 49, 51, 62, 69, 71, 73, 77, 85, 93, 97, 98, 102, 119, 127, 142, 161, 170, 194, 196, 199, 223, 233, 238, 241, 245, 279, 281, 287, 291, 337, 357, 381, 388, 391, 398, 439, 446, 449, 476, 482, 483, 511, 521, 527, 562
Offset: 1

Views

Author

Felix Huber, Mar 26 2025

Keywords

Comments

A381336(a(n)) is the short leg, a(n) + A381336(a(n)) is the long leg and A381337(a(n)) is the hypotenuse.

Examples

			12 is in the sequence because A381336(12)^2 + (A381336(12) + 12)^2 = 36^2 + 48^2 = 60^2 = A381337(12)^2.
		

Crossrefs

Programs

  • Maple
    isA382297:=proc(n)
        local k,c,s;
        for k do
            for c from k+n to 2*k+n-1 do
                s:=(n+2*k+c)/2;
                if issqr(s*(s-k)*(s-k-n)*(s-c)) then
                    return [k,n+k,c];
                fi
            od
        od;
    end proc;
    A382297:=proc(n)
        option remember;
        local a;
        if n=1 then
            1
        else
            for a from procname(n-1)+1 do
                if isA382297(a)[1]^2+isA382297(a)[2]^2=isA382297(a)[3]^2 then
                    return a
                fi
            od
        fi;
    end proc;
    seq(A382297(n),n=1..59);

Formula

A381336(a(n))^2 + (A381336(a(n)) + a(n))^2 = A381337(a(n))^2.
Showing 1-2 of 2 results.