A381348 Irregular triangle read by rows in which row n lists the largest subset of Z/nZ fixed by x -> x^2.
0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 3, 4, 0, 1, 2, 4, 0, 1, 0, 1, 4, 7, 0, 1, 5, 6, 0, 1, 3, 4, 5, 9, 0, 1, 4, 9, 0, 1, 3, 9, 0, 1, 2, 4, 7, 8, 9, 11, 0, 1, 6, 10, 0, 1, 0, 1, 0, 1, 4, 7, 9, 10, 13, 16, 0, 1, 4, 5, 6, 7, 9, 11, 16, 17, 0, 1, 5, 16, 0, 1, 4, 7, 9, 15, 16, 18
Offset: 1
Examples
Triangle begins: (mod 1) 0; (mod 2) 0, 1; (mod 3) 0, 1; (mod 4) 0, 1; (mod 5) 0, 1; (mod 6) 0, 1, 3, 4; (mod 7) 0, 1, 2, 4; (mod 8) 0, 1; (mod 9) 0, 1, 4, 7; (mod 10) 0, 1, 5, 6; (mod 11) 0, 1, 3, 4, 5, 9; (mod 12) 0, 1, 4, 9; (mod 13) 0, 1, 3, 9; (mod 14) 0, 1, 2, 4, 7, 8, 9, 11; (mod 15) 0, 1, 6, 10; (mod 16) 0, 1; (mod 17) 0, 1; ...
Links
Programs
-
PARI
row(n)=my(p=[0..n>>1], c=[0..n>>1]); until(p==c, p=c; c=Set([lift(Mod(v, n)^2)|v<-c])); return(c);
-
Python
def row(n): l = set(range((n >> 1) + 1)) while True: newl = {x**2 % n for x in l} if newl == l: break l = newl return l
Comments