A381351 Number of subsets of 9 integers between 1 and n such that their sum is 3 modulo n.
1, 5, 19, 55, 143, 335, 715, 1430, 2703, 4862, 8398, 14000, 22610, 35530, 54484, 81719, 120175, 173592, 246675, 345345, 476913, 650325, 876525, 1168710, 1542684, 2017356, 2615103, 3362260, 4289780, 5433736, 6835972, 8544965, 10616489, 13114465
Offset: 10
Examples
For n=10, there are a(10)=1 order 9 subsets of Z/10Z with sum equal to 3 mod 10.
Links
- David Broadhurst and Xavier Roulleau, Number of partitions of modular integers, arXiv:2502.19523 [math.NT], 2025.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,22,-27,36,-42,36,-27,23,-21,21,-23,27,-36,42,-36,27,-22,15,-6,1).
Formula
G.f.: x^10*(1 - x + 4*x^2 - 6*x^3 + 15*x^4 - 17*x^5 + 15*x^6 - 6*x^7 + 4*x^8 - x^9 + x^10)/((1 - x)^6*(1 - x^3)^2*(1 - x^9)).
Comments