A381391 Number of k <= 10^n that are neither squarefree nor prime powers (i.e., k is in A126706).
0, 29, 367, 3866, 39098, 391838, 3920154, 39205902, 392069187, 3920718974, 39207261564, 392072817656, 3920728751139, 39207289143932, 392072896183208, 3920728975677128, 39207289797472001, 392072898095046811, 3920728981307675534, 39207289814141997459, 392072898144605471040
Offset: 1
Keywords
Examples
Let S = A126706. a(1) = 0 since the smallest term in S is 12. a(2) = 29 since S(1..29) = {12, 18, 20, 24, ..., 99, 100}, etc.
Programs
-
Mathematica
Table[10^n - Sum[PrimePi@ Floor[10^(n/k)], {k, 2, Floor[Log2[10^n]]}] - Sum[MoebiusMu[k]*Floor[10^n/(k^2)], {k, Floor[Sqrt[10^n]]}], {n, 10}]
-
Python
from math import isqrt from sympy import primepi, integer_nthroot, mobius def A381391(n): m = 10**n return int(-sum(primepi(integer_nthroot(m,k)[0]) for k in range(2,m.bit_length()))-sum(mobius(k)*(m//k**2) for k in range(2, isqrt(m)+1))) # Chai Wah Wu, Feb 23 2025