This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381394 #18 Aug 15 2025 10:28:41 %S A381394 0,0,4,1,2,2,4,6,9,6,7,8,3,9,9,8,3,2,2,2,4,0,4,6,9,5,6,8,3,8,6,9,4,2, %T A381394 0,8,8,5,5,8,1,2,6,2,7,3,5,8,4,6,8,5,6,9,2,8,5,2,4,5,5,1,7,9,2,8,7,1, %U A381394 7,1,1,1,2,7,7,4,0,6,3,8,8,3,3,1,2,7,5,9,4,5,3,4,5,2,4,3,4,1,7,3,8,8,1,7,4 %N A381394 Decimal expansion of the multiple zeta value zetamult(8,2). %H A381394 Richard E. Crandall and Joe P. Buhler, <a href="https://projecteuclid.org/journals/experimental-mathematics/volume-3/issue-4/On-the-evaluation-of-Euler-sums/em/1048515810.full">On the evaluation of Euler Sums</a>, Exp. Math. 3 (4) (1994), 275-285, Table 1. %H A381394 Debra MaƮtre, <a href="https://www.physik.uzh.ch/data/HPL/">Mathematica Package HPL</a>. %H A381394 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/MultivariateZetaFunction.html">Multivariate Zeta Function</a> %F A381394 zeta(r,s) = Sum_{1 <= m < n} 1/(m^s n^r). %e A381394 0.004122469678399832224046956838694208855812627358468569285245... %t A381394 RealDigits[N[MZV[{8, 2}], 120], 10, 105, -1][[1]] (* _Amiram Eldar_, Feb 25 2025 using the HPL Package *) %o A381394 (PARI) zetamult([8, 2]) \\ _Amiram Eldar_, Feb 25 2025 %Y A381394 MZV's zetamult(a,b): A072691 (zetamult(1,1)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4), A381651 (4,1). %K A381394 nonn,cons %O A381394 0,3 %A A381394 _R. J. Mathar_, Feb 22 2025 %E A381394 More terms from _Amiram Eldar_, Feb 25 2025 %E A381394 Name corrected by _Peter Bala_, Aug 15 2025