This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381398 #11 Feb 25 2025 11:39:24 %S A381398 1,2,1,3,2,1,5,1,2,3,1,7,2,3,2,3,1,2,5,1,11,1,2,3,1,13,1,2,7,1,3,5,2, %T A381398 4,1,17,1,2,3,1,19,1,2,5,1,3,7,1,2,11,1,23,1,2,3,2,5,1,2,13,3,1,2,7,1, %U A381398 29,1,2,3,5,1,31,2,5,1,3,11,1,2,17,1,5,7,2,3 %N A381398 Irregular triangle read by rows, where row n lists the elements of the set of bases and exponents (including exponents = 1) in the prime factorization of n. %H A381398 Paolo Xausa, <a href="/A381398/b381398.txt">Table of n, a(n) for n = 2..10326</a> (rows 2..3000 of triangle, flattened). %e A381398 Triangle begins: %e A381398 [2] 1, 2; %e A381398 [3] 1, 3; %e A381398 [4] 2; %e A381398 [5] 1, 5; %e A381398 [6] 1, 2, 3; %e A381398 [7] 1, 7; %e A381398 [8] 2, 3; %e A381398 [9] 2, 3; %e A381398 [10] 1, 2, 5; %e A381398 ... %e A381398 The prime factorization of 10 is 2^1*5^1 and the set of these bases and exponents is {1, 2, 5}. %t A381398 A381398row[n_] := Union[Flatten[FactorInteger[n]]]; %t A381398 Array[A381398row, 50, 2] %Y A381398 Cf. A381201 (row products), A381202 (row sums), A381205 (row lengths). %Y A381398 Cf. A381203 (row lcms), A381204 (row gcds). %Y A381398 Cf. A081812 (row largest elements), A381212 (row smallest elements). %Y A381398 Cf. A035306, A381399, A381402. %K A381398 nonn,tabf,easy %O A381398 2,2 %A A381398 _Paolo Xausa_, Feb 22 2025