cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381422 Expansion of g.f. = exp( Sum_{n>=1} A066802(n)*x^n/n ).

This page as a plain text file.
%I A381422 #10 Jun 02 2025 15:29:13
%S A381422 1,20,662,26780,1205961,58050204,2924165436,152231599628,
%T A381422 8125577046740,442293253888592,24457749066666142,1370114821790970340,
%U A381422 77591333270514869230,4434803157977731784808,255492958449660158603448,14820943641891118200315756,864962304943085638764540396
%N A381422 Expansion of g.f. = exp( Sum_{n>=1} A066802(n)*x^n/n ).
%F A381422 G.f. = 64/((1 + sqrt(1 - 4*x^(1/3)))^2*(1 + sqrt(1 + 4*(-1)^(1/3)*x^(1/3)))^2*(1 + sqrt(1 - 4*(-1)^(2/3)*x^(1/3)))^2).
%F A381422 The above g.f. denoted by h satisfies algebraic equation of order eight:
%F A381422 1 + (8*x - 1)*h + 4*x*(7*x + 3)*h^2 + 7*x^2*(8*x - 1)*h^3 + x^2*(70*x^2 - 40*x + 1)*h^4 + 7*x^4*(8*x - 1)*h^5 + 4*x^5*(7*x + 3)*h^6 + x^6*(8*x - 1)*h^7 + x^8*h^8 = 0.
%Y A381422 Cf. A066802, A155200, A255881, A229451, A229452, A156216.
%K A381422 nonn
%O A381422 0,2
%A A381422 _Karol A. Penson_, Apr 22 2025