cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381424 Truncated hex numbers: a(n) = 24*n^2 + 6*n + 1.

Original entry on oeis.org

1, 31, 109, 235, 409, 631, 901, 1219, 1585, 1999, 2461, 2971, 3529, 4135, 4789, 5491, 6241, 7039, 7885, 8779, 9721, 10711, 11749, 12835, 13969, 15151, 16381, 17659, 18985, 20359, 21781, 23251, 24769, 26335, 27949, 29611, 31321, 33079, 34885, 36739, 38641
Offset: 0

Views

Author

Aaron David Fairbanks, Feb 23 2025

Keywords

Examples

			Illustration of initial terms:
.
.                                    o o o
.                                 o o o o o o
.                              o o o o o o o o o
.              o o            o o o o o o o o o o
.           o o o o o        o o o o o o o o o o o
.          o o o o o o        o o o o o o o o o o
.   o       o o o o o        o o o o o o o o o o o
.          o o o o o o        o o o o o o o o o o
.           o o o o o        o o o o o o o o o o o
.              o o            o o o o o o o o o o
.                              o o o o o o o o o
.                                 o o o o o o
.                                    o o o
.
.   1          31                     109
.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,-3,1},{1,31,109},41] (* James C. McMahon, Mar 06 2025 *)

Formula

a(n) = A003215(3*n) - 6*A000217(n).
a(n) = 6*A007742(n) + 1.
G.f.: (19*x^2+28*x+1)/(1-x)^3.