This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381425 #109 Apr 11 2025 12:09:07 %S A381425 1,1,0,1,1,0,1,2,1,0,1,3,5,1,0,1,4,12,10,1,0,1,5,22,37,18,1,0,1,6,35, %T A381425 92,102,30,1,0,1,7,51,185,345,258,47,1,0,1,8,70,326,880,1188,606,70,1, %U A381425 0,1,9,92,525,1881,3851,3796,1335,100,1,0,1,10,117,792,3563,10002,15655,11364,2781,138,1,0 %N A381425 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of (1 + x/(1-x)^k)^k. %H A381425 Seiichi Manyama, <a href="/A381425/b381425.txt">Antidiagonals n = 0..139, flattened</a> %F A381425 A(n,k) = Sum_{j=0..k} binomial(k,j) * binomial(n+(k-1)*j-1,n-j). %e A381425 Square array begins: %e A381425 1, 1, 1, 1, 1, 1, 1, ... %e A381425 0, 1, 2, 3, 4, 5, 6, ... %e A381425 0, 1, 5, 12, 22, 35, 51, ... %e A381425 0, 1, 10, 37, 92, 185, 326, ... %e A381425 0, 1, 18, 102, 345, 880, 1881, ... %e A381425 0, 1, 30, 258, 1188, 3851, 10002, ... %e A381425 0, 1, 47, 606, 3796, 15655, 49468, ... %o A381425 (PARI) a(n, k) = sum(j=0, k, binomial(k, j)*binomial(n+(k-1)*j-1, n-j)); %Y A381425 Columns k=0..2 give A000007, A000012, A177787. %Y A381425 Rows n=0..3 give A000012, A001477, A000326, A096000(k-1). %Y A381425 Main diagonal gives A382859. %Y A381425 Cf. A071919, A362125. %K A381425 nonn,easy,tabl %O A381425 0,8 %A A381425 _Seiichi Manyama_, Apr 07 2025