This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381431 #10 Feb 27 2025 22:58:04 %S A381431 1,2,3,4,5,5,7,8,9,7,11,10,13,11,11,16,17,15,19,14,13,13,23,20,25,17, %T A381431 27,22,29,13,31,32,17,19,17,25,37,23,19,28,41,17,43,26,33,29,47,40,49, %U A381431 35,23,34,53,45,19,44,29,31,59,26,61,37,39,64,23,19,67,38 %N A381431 Heinz number of the section-sum partition of the prime indices of n. %C A381431 The image first differs from A320340, A364347, A350838 in containing a(150) = 65. %C A381431 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A381431 The section-sum partition (A381436) of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3). %C A381431 Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k. %C A381431 The conjugate of a section-sum partition is a Look-and-Say partition; see A048767, union A351294, count A239455. %F A381431 A122111(a(n)) = A048767(n). %e A381431 Prime indices of 180 are (3,2,2,1,1), with section-sum partition (6,3), so a(180) = 65. %e A381431 The terms together with their prime indices begin: %e A381431 1: {} %e A381431 2: {1} %e A381431 3: {2} %e A381431 4: {1,1} %e A381431 5: {3} %e A381431 5: {3} %e A381431 7: {4} %e A381431 8: {1,1,1} %e A381431 9: {2,2} %e A381431 7: {4} %e A381431 11: {5} %e A381431 10: {1,3} %e A381431 13: {6} %e A381431 11: {5} %e A381431 11: {5} %e A381431 16: {1,1,1,1} %t A381431 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A381431 egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]]; %t A381431 Table[Times@@Prime/@egs[prix[n]],{n,100}] %Y A381431 The conjugate is A048767, union A351294, complement A351295, fix A048768 (count A217605). %Y A381431 Taking length instead of sum in the definition gives A238745, conjugate A181819. %Y A381431 Partitions of this type are counted by A239455, complement A351293. %Y A381431 The union is A381432, complement A381433. %Y A381431 Values appearing only once are A381434, more than once A381435. %Y A381431 These are the Heinz numbers of rows of A381436, conjugate A381440. %Y A381431 Greatest prime index of each term is A381437, counted by A381438. %Y A381431 A000040 lists the primes, differences A001223. %Y A381431 A003963 gives product of prime indices. %Y A381431 A055396 gives least prime index, greatest A061395. %Y A381431 A056239 adds up prime indices, row sums of A112798, counted by A001222. %Y A381431 A122111 represents conjugation in terms of Heinz numbers. %Y A381431 Set multipartitions: A050320, A089259, A116540, A270995, A296119, A318360, A318361. %Y A381431 Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454. %Y A381431 Cf. A000720, A003557, A005117, A047966, A051903, A066328, A091602, A116861, A130091, A212166, A380955. %K A381431 nonn %O A381431 1,2 %A A381431 _Gus Wiseman_, Feb 26 2025