This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381432 #7 Feb 28 2025 10:35:51 %S A381432 1,2,3,4,5,7,8,9,10,11,13,14,15,16,17,19,20,22,23,25,26,27,28,29,31, %T A381432 32,33,34,35,37,38,39,40,41,43,44,45,46,47,49,50,51,52,53,55,56,57,58, %U A381432 59,61,62,64,65,67,68,69,71,73,74,75,76,77,79,80,81,82,83 %N A381432 Heinz numbers of section-sum partitions. Union of A381431. %C A381432 First differs from A320340, A364347, A350838 in containing 65. %C A381432 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A381432 The section-sum partition (A381436) of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3). %C A381432 Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k. %C A381432 The conjugate of a section-sum partition is a Look-and-Say partition; see A048767, union A351294, count A239455. %e A381432 The terms together with their prime indices begin: %e A381432 1: {} %e A381432 2: {1} %e A381432 3: {2} %e A381432 4: {1,1} %e A381432 5: {3} %e A381432 7: {4} %e A381432 8: {1,1,1} %e A381432 9: {2,2} %e A381432 10: {1,3} %e A381432 11: {5} %e A381432 13: {6} %e A381432 14: {1,4} %e A381432 15: {2,3} %e A381432 16: {1,1,1,1} %e A381432 17: {7} %e A381432 19: {8} %e A381432 20: {1,1,3} %e A381432 22: {1,5} %e A381432 23: {9} %e A381432 25: {3,3} %e A381432 26: {1,6} %e A381432 27: {2,2,2} %t A381432 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A381432 egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]]; %t A381432 Select[Range[100],MemberQ[Times@@Prime/@#&/@egs/@IntegerPartitions[Total[prix[#]]],#]&] %Y A381432 Partitions of this type are counted by A239455, complement A351293. %Y A381432 The conjugate is A351294, union of A048767 (parts A381440, fixed A048768, A217605). %Y A381432 Union of A381431 (parts A381436). %Y A381432 The complement is A381433, conjugate A351295. %Y A381432 A000040 lists the primes, differences A001223. %Y A381432 A055396 gives least prime index, greatest A061395. %Y A381432 A056239 adds up prime indices, row sums of A112798, counted by A001222. %Y A381432 A122111 represents conjugation in terms of Heinz numbers. %Y A381432 Set multipartitions: A050320, A089259, A116540, A270995, A296119, A318360, A318361. %Y A381432 Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454. %Y A381432 Cf. A000720, A003557, A047966, A051903, A066328, A116861, A130091, A212166, A238745, A239964, A317081, A381437. %K A381432 nonn %O A381432 1,2 %A A381432 _Gus Wiseman_, Feb 27 2025