A381433 Heinz numbers of non section-sum partitions. Complement of A381431.
6, 12, 18, 21, 24, 30, 36, 42, 48, 54, 60, 63, 66, 70, 72, 78, 84, 90, 96, 102, 105, 108, 110, 114, 120, 126, 132, 138, 140, 144, 147, 150, 154, 156, 162, 165, 168, 174, 180, 186, 189, 192, 198, 204, 210, 216, 220, 222, 228, 231, 234, 238, 240, 246, 252, 258
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 6: {1,2} 12: {1,1,2} 18: {1,2,2} 21: {2,4} 24: {1,1,1,2} 30: {1,2,3} 36: {1,1,2,2} 42: {1,2,4} 48: {1,1,1,1,2} 54: {1,2,2,2} 60: {1,1,2,3} 63: {2,2,4} 66: {1,2,5} 70: {1,3,4} 72: {1,1,1,2,2} 78: {1,2,6} 84: {1,1,2,4} 90: {1,2,2,3} 96: {1,1,1,1,1,2} 102: {1,2,7} 105: {2,3,4} 108: {1,1,2,2,2}
Crossrefs
A122111 represents conjugation in terms of Heinz numbers.
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]]; Select[Range[100],!MemberQ[Times@@Prime/@#&/@egs/@IntegerPartitions[Total[prix[#]]],#]&]
Comments