This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381434 #14 Mar 02 2025 22:34:48 %S A381434 1,2,3,4,8,9,10,14,15,16,20,22,27,28,32,33,35,40,44,45,50,55,56,64,75, %T A381434 77,80,81,88,98,99,100,112,128,130,135,160,170,175,176,182,190,195, %U A381434 196,200 %N A381434 Numbers appearing only once in A381431 (section-sum partition of prime indices). %C A381434 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A381434 The section-sum partition (A381436) of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3). %C A381434 Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k. %C A381434 The conjugate of a section-sum partition is a Look-and-Say partition; see A048767, union A351294, count A239455. %F A381434 The complement is A381433 U A381435. %e A381434 The terms together with their prime indices begin: %e A381434 1: {} %e A381434 2: {1} %e A381434 3: {2} %e A381434 4: {1,1} %e A381434 8: {1,1,1} %e A381434 9: {2,2} %e A381434 10: {1,3} %e A381434 14: {1,4} %e A381434 15: {2,3} %e A381434 16: {1,1,1,1} %e A381434 20: {1,1,3} %e A381434 22: {1,5} %e A381434 27: {2,2,2} %e A381434 28: {1,1,4} %e A381434 32: {1,1,1,1,1} %t A381434 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A381434 egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]]; %t A381434 Select[Range[100],Count[Times@@Prime/@#&/@egs/@IntegerPartitions[Total[prix[#]]],#]==1&] %Y A381434 In A381431: %Y A381434 - fixed points are A000961, A000005 %Y A381434 - conjugate is A048767, fixed points A048768, A217605 %Y A381434 - all numbers present are A381432, conjugate A351294 %Y A381434 - numbers missing are A381433, conjugate A351295 %Y A381434 - numbers appearing only once are A381434 (this), conjugate A381540 %Y A381434 - numbers appearing more than once are A381435, conjugate A381541 %Y A381434 A000040 lists the primes, differences A001223. %Y A381434 A055396 gives least prime index, greatest A061395. %Y A381434 A056239 adds up prime indices, row sums of A112798, counted by A001222. %Y A381434 A122111 represents conjugation in terms of Heinz numbers. %Y A381434 A239455 counts section-sum partitions, complement A351293. %Y A381434 A381436 lists section-sum partition of prime indices, conjugate A381440. %Y A381434 Set multipartitions: A050320, A089259, A116540, A296119, A318360, A318361. %Y A381434 Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454. %Y A381434 Cf. A000720, A003557, A051903, A066328, A116861, A130091, A212166, A239964, A317081, A381437. %K A381434 nonn %O A381434 1,2 %A A381434 _Gus Wiseman_, Feb 27 2025