A381438 Triangle read by rows where T(n>0,k>0) is the number of integer partitions of n whose section-sum partition ends with k.
1, 1, 1, 1, 0, 2, 2, 1, 0, 2, 3, 1, 0, 0, 3, 4, 1, 2, 0, 0, 4, 7, 2, 1, 0, 0, 0, 5, 9, 4, 1, 2, 0, 0, 0, 6, 13, 4, 4, 1, 0, 0, 0, 0, 8, 18, 6, 3, 2, 3, 0, 0, 0, 0, 10, 26, 9, 5, 2, 2, 0, 0, 0, 0, 0, 12, 32, 12, 8, 4, 2, 4, 0, 0, 0, 0, 0, 15
Offset: 1
Examples
Triangle begins: 1 1 1 1 0 2 2 1 0 2 3 1 0 0 3 4 1 2 0 0 4 7 2 1 0 0 0 5 9 4 1 2 0 0 0 6 13 4 4 1 0 0 0 0 8 18 6 3 2 3 0 0 0 0 10 26 9 5 2 2 0 0 0 0 0 12 32 12 8 4 2 4 0 0 0 0 0 15 47 16 11 4 3 2 0 0 0 0 0 0 18 60 23 12 8 3 2 5 0 0 0 0 0 0 22 79 27 20 7 9 4 3 0 0 0 0 0 0 0 27 Row n = 9 counts the following partitions: (711) (522) (333) (441) . . . . (9) (6111) (4221) (3321) (81) (5211) (3222) (32211) (72) (51111) (22221) (222111) (63) (4311) (621) (42111) (54) (411111) (531) (33111) (432) (321111) (3111111) (2211111) (21111111) (111111111)
Crossrefs
Programs
-
Mathematica
egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]]; Table[Length[Select[IntegerPartitions[n],k==Last[egs[#]]&]],{n,15},{k,n}]
Comments