This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381439 #6 Mar 02 2025 16:04:19 %S A381439 3,5,6,7,9,10,11,13,14,15,17,18,19,21,22,23,25,26,27,29,30,31,33,34, %T A381439 35,36,37,38,39,41,42,43,45,46,47,49,50,51,53,54,55,57,58,59,61,62,63, %U A381439 65,66,67,69,70,71,73,74,75,77,78,79,81,82,83,85,86,87,89 %N A381439 Numbers whose exponent of 2 in their canonical prime factorization is not larger than all the other exponents. %C A381439 First differs from A335740 in lacking 72, which has prime indices {1,1,1,2,2} and section-sum partition (3,3,1). %C A381439 Also numbers whose section-sum partition of prime indices (A381436) ends with a number > 1. %C A381439 Includes all squarefree numbers (A005117) except 2. %F A381439 Positive integers n such that A007814(n) <= A375669(n). %e A381439 The terms together with their prime indices begin: %e A381439 3: {2} 25: {3,3} 45: {2,2,3} %e A381439 5: {3} 26: {1,6} 46: {1,9} %e A381439 6: {1,2} 27: {2,2,2} 47: {15} %e A381439 7: {4} 29: {10} 49: {4,4} %e A381439 9: {2,2} 30: {1,2,3} 50: {1,3,3} %e A381439 10: {1,3} 31: {11} 51: {2,7} %e A381439 11: {5} 33: {2,5} 53: {16} %e A381439 13: {6} 34: {1,7} 54: {1,2,2,2} %e A381439 14: {1,4} 35: {3,4} 55: {3,5} %e A381439 15: {2,3} 36: {1,1,2,2} 57: {2,8} %e A381439 17: {7} 37: {12} 58: {1,10} %e A381439 18: {1,2,2} 38: {1,8} 59: {17} %e A381439 19: {8} 39: {2,6} 61: {18} %e A381439 21: {2,4} 41: {13} 62: {1,11} %e A381439 22: {1,5} 42: {1,2,4} 63: {2,2,4} %e A381439 23: {9} 43: {14} 65: {3,6} %t A381439 Select[Range[100],FactorInteger[2*#][[1,2]]-1<=Max@@Last/@Rest[FactorInteger[2*#]]&] %Y A381439 The LHS (exponent of 2) is A007814. %Y A381439 The complement is A360013 = 2*A360015 (if we prepend 1), counted by A241131 (shifted right and starting with 1 instead of 0). %Y A381439 The case of equality is A360014, inclusive A360015. %Y A381439 The RHS (greatest exponent of an odd prime factor) is A375669. %Y A381439 These are positions of terms > 1 in A381437. %Y A381439 Partitions of this type are counted by A381544. %Y A381439 A000040 lists the primes, differences A001223. %Y A381439 A051903 gives greatest prime exponent, least A051904. %Y A381439 A055396 gives least prime index, greatest A061395. %Y A381439 A056239 adds up prime indices, row sums of A112798. %Y A381439 A122111 represents conjugation in terms of Heinz numbers. %Y A381439 A239455 counts Look-and-Say partitions, complement A351293. %Y A381439 A381436 gives section-sum partition of prime indices, Heinz number A381431. %Y A381439 A381438 counts partitions by last part part of section-sum partition. %Y A381439 Cf. A000720, A001221, A001222, A001694, A003557, A005117, A066328, A130091, A181819, A212166, A380955. %K A381439 nonn %O A381439 1,1 %A A381439 _Gus Wiseman_, Mar 02 2025