This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381440 #6 Feb 28 2025 23:12:04 %S A381440 1,1,1,2,1,1,1,1,1,1,1,1,1,1,3,2,2,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1, %T A381440 1,1,1,1,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,2,2,1,1,1,1,1,1,1,1,1,2,1,1,1, %U A381440 1,1,1,1,1,1,1,1,1,1,1,1 %N A381440 Irregular triangle read by rows where row k is the Look-and-Say partition of the prime indices of n. %C A381440 Row lengths are A066328. %C A381440 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A381440 The Look-and-Say partition of a multiset or partition y is obtained by interchanging parts with multiplicities. For example, starting with (3,2,2,1,1) we get (2,2,2,1,1,1), the multiset union of ((1,1,1),(2,2),(2)). %C A381440 The conjugate of a Look-and-Say partition is a section-sum partition; see A381431, union A381432, count A239455. %e A381440 The prime indices of 24 are (2,1,1,1), with Look-and-Say partition (3,1,1), so row 24 is (3,1,1). %e A381440 The prime indices of 36 are (2,2,1,1), with Look-and-Say partition (2,2,2), so row 36 is (2,2,2). %e A381440 Triangle begins: %e A381440 1: (empty) %e A381440 2: 1 %e A381440 3: 1 1 %e A381440 4: 2 %e A381440 5: 1 1 1 %e A381440 6: 1 1 1 %e A381440 7: 1 1 1 1 %e A381440 8: 3 %e A381440 9: 2 2 %e A381440 10: 1 1 1 1 %e A381440 11: 1 1 1 1 1 %e A381440 12: 2 1 1 %e A381440 13: 1 1 1 1 1 1 %e A381440 14: 1 1 1 1 1 %e A381440 15: 1 1 1 1 1 %e A381440 16: 4 %e A381440 17: 1 1 1 1 1 1 1 %e A381440 18: 2 2 1 %e A381440 19: 1 1 1 1 1 1 1 1 %t A381440 Table[Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>ConstantArray[k,PrimePi[p]]]]//Reverse,{n,30}] %Y A381440 Heinz numbers are A048767 (union A351294, complement A351295, fixed A048768, A217605). %Y A381440 First part in each row is A051903, conjugate A066328. %Y A381440 Last part in each row is A051904, conjugate A381437 (counted by A381438). %Y A381440 Row sums are A056239. %Y A381440 Row lengths are A066328. %Y A381440 Partitions of this type are counted by A239455, complement A351293. %Y A381440 The conjugate is A381436, Heinz numbers A381431 (union A381432, complement A381433). %Y A381440 Rows appearing only once have Heinz numbers A381540, more than once A381541. %Y A381440 A000040 lists the primes. %Y A381440 A003963 gives product of prime indices. %Y A381440 A055396 gives least prime index, greatest A061395. %Y A381440 A056239 adds up prime indices, row sums of A112798, counted by A001222. %Y A381440 A122111 represents conjugation in terms of Heinz numbers. %Y A381440 Set multipartitions: A050320, A089259, A116540, A270995, A296119, A318360, A318361. %Y A381440 Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454. %Y A381440 Cf. A000720, A003557, A047966, A071178, A091602, A116861, A130091, A181819, A212166, A238744, A380955. %K A381440 nonn,tabf %O A381440 1,4 %A A381440 _Gus Wiseman_, Feb 28 2025