cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381446 E.g.f. A(x) satisfies A(x) = 1/( 1 - x * cosh(x) * A(x)^3 ).

This page as a plain text file.
%I A381446 #10 Feb 24 2025 05:37:57
%S A381446 1,1,8,135,3456,120245,5303040,283559227,17830210048,1289406976713,
%T A381446 105435719470080,9619902621234191,968905466782150656,
%U A381446 106779534666615500989,12781543241568143171584,1651368425166943566943875,229049483642619517308764160,33947359023461155854768564497
%N A381446 E.g.f. A(x) satisfies A(x) = 1/( 1 - x * cosh(x) * A(x)^3 ).
%C A381446 As stated in the comment of A185951, A185951(n,0) = 0^n.
%F A381446 a(n) = Sum_{k=0..n} k! * binomial(4*k+1,k)/(4*k+1) * A185951(n,k).
%o A381446 (PARI) a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
%o A381446 a(n) = sum(k=0, n, k!*binomial(4*k+1, k)/(4*k+1)*a185951(n, k));
%Y A381446 Cf. A205571, A295256, A381445.
%Y A381446 Cf. A185951.
%K A381446 nonn
%O A381446 0,3
%A A381446 _Seiichi Manyama_, Feb 23 2025