cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381452 Number of multisets that can be obtained by partitioning the prime indices of n into a set of multisets and taking their sums.

This page as a plain text file.
%I A381452 #11 Mar 08 2025 12:24:03
%S A381452 1,1,1,1,1,2,1,2,1,2,1,3,1,2,2,2,1,3,1,3,2,2,1,4,1,2,2,3,1,5,1,3,2,2,
%T A381452 2,4,1,2,2,5,1,5,1,3,3,2,1,5,1,3,2,3,1,5,2,5,2,2,1,7,1,2,3,4,2,5,1,3,
%U A381452 2,5,1,6,1,2,3,3,2,5,1,6,2,2,1,8,2,2,2
%N A381452 Number of multisets that can be obtained by partitioning the prime indices of n into a set of multisets and taking their sums.
%C A381452 First differs from A045778 at a(24) = 4, A045778(24) = 5.
%C A381452 Also the number of multisets that can be obtained by taking the sums of prime indices of each factor in a factorization of n into distinct factors > 1.
%C A381452 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A381452 A multiset partition can be regarded as an arrow in the poset of integer partitions. For example, we have {{1},{1,2},{1,3},{1,2,3}}: {1,1,1,1,2,2,3,3} -> {1,3,4,6}, or (33221111) -> (6431) (depending on notation).
%C A381452 Sets of multisets are generally not transitive. For example, we have arrows: {{1},{2},{1,2}}: {1,1,2,2} -> {1,2,3} and {{1,2},{3}}: {1,2,3} -> {3,3}, but there is no set of multisets {1,1,2,2} -> {3,3}.
%F A381452 a(A002110(n)) = A066723(n).
%e A381452 The prime indices of 24 are {1,1,1,2}, with 5 partitions into a set of multisets:
%e A381452   {{1,1,1,2}}
%e A381452   {{1},{1,1,2}}
%e A381452   {{2},{1,1,1}}
%e A381452   {{1,1},{1,2}}
%e A381452   {{1},{2},{1,1}}
%e A381452 with block-sums: {5}, {1,4}, {2,3}, {2,3}, {1,2,2}, of which 4 are distinct, so a(24) = 4.
%t A381452 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A381452 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A381452 mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
%t A381452 Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],UnsameQ@@#&]]],{n,100}]
%Y A381452 Before taking sums we had A045778.
%Y A381452 If each block is a set we have A381441, before sums A050326.
%Y A381452 For distinct block-sums instead of blocks we have A381637, before sums A321469.
%Y A381452 Other multiset partitions of prime indices:
%Y A381452 - For multisets of constant multisets (A000688) see A381455 (upper), A381453 (lower).
%Y A381452 - For multiset partitions (A001055) see A317141 (upper), A300383 (lower).
%Y A381452 - For set multipartitions (A050320) see A381078 (upper), A381454 (lower).
%Y A381452 - For sets of constant multisets (A050361) see A381715.
%Y A381452 - For set systems with distinct sums (A381633) see A381634, zeros A293243.
%Y A381452 - For sets of constant multisets with distinct sums (A381635) see A381716, A381636.
%Y A381452 More on sets of multisets: A261049, A317776, A317775, A296118, A318286.
%Y A381452 A000041 counts integer partitions, strict A000009.
%Y A381452 A000040 lists the primes.
%Y A381452 A003963 gives product of prime indices.
%Y A381452 A055396 gives least prime index, greatest A061395.
%Y A381452 A056239 adds up prime indices, row sums of A112798.
%Y A381452 A122111 represents conjugation in terms of Heinz numbers.
%Y A381452 A265947 counts refinement-ordered pairs of integer partitions.
%Y A381452 Cf. A000720, A001222, A001970, A002846, A066328, A213385, A213427, A299200, A299202, A300385, A317142.
%K A381452 nonn
%O A381452 1,6
%A A381452 _Gus Wiseman_, Mar 06 2025