This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381453 #12 Apr 01 2025 11:10:41 %S A381453 1,1,2,1,2,2,3,1,3,2,2,2,4,3,4,1,2,3,4,2,6,2,3,2,3,4,4,3,4,4,2,1,4,2, %T A381453 6,3,6,4,8,2,2,6,4,2,6,3,4,2,6,3,4,4,5,4,4,3,8,4,2,4,6,2,8,1,8,4,2,2, %U A381453 6,6,6,3,4,6,6,4,6,8,4,2,5,2,2,6,4,4,8 %N A381453 Number of multisets that can be obtained by choosing a constant integer partition of each prime index of n and taking the multiset union. %C A381453 First differs from A355733 and A355735 at a(21) = 6, A355733(21) = A355735(21) = 5. %C A381453 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A381453 A multiset partition can be regarded as an arrow in the ranked poset of integer partitions. For example, we have {{1},{1,2},{1,3},{1,2,3}}: {1,1,1,1,2,2,3,3} -> {1,3,4,6}, or (33221111) -> (6431) (depending on notation). %C A381453 Multisets of constant multisets are generally not transitive. For example, we have arrows: {{1,1},{2}}: {1,1,2} -> {2,2} and {{2,2}}: {2,2} -> {4}, but there is no multiset of constant multisets {1,1,2} -> {4}. %H A381453 Robert Price, <a href="/A381453/b381453.txt">Table of n, a(n) for n = 1..300</a> %F A381453 a(A002110(n)) = A381807(n). %e A381453 The a(21) = 6 multisets are: {2,4}, {1,1,4}, {2,2,2}, {1,1,2,2}, {2,1,1,1,1}, {1,1,1,1,1,1}. %e A381453 The a(n) partitions for n = 1, 3, 7, 13, 53, 21 (G = 16): %e A381453 () (2) (4) (6) (G) (42) %e A381453 (11) (22) (33) (88) (411) %e A381453 (1111) (222) (4444) (222) %e A381453 (111111) (22222222) (2211) %e A381453 (1111111111111111) (21111) %e A381453 (111111) %t A381453 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A381453 Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],SameQ@@#&]&/@prix[n]]]],{n,nn}] %Y A381453 Positions of 1 are A000079. %Y A381453 The strict case is A008966. %Y A381453 Before sorting we had A355731. %Y A381453 Choosing divisors instead of constant multisets gives A355733. %Y A381453 The upper version is A381455, before taking sums A000688. %Y A381453 Multiset partitions of prime indices: %Y A381453 - For multiset partitions (A001055) see A317141 (upper), A300383 (lower). %Y A381453 - For strict multiset partitions (A045778) see A381452. %Y A381453 - For set multipartitions (A050320) see A381078 (upper), A381454 (lower). %Y A381453 - For set systems (A050326, zeros A293243) see A381441 (upper). %Y A381453 - For sets of constant multisets (A050361) see A381715. %Y A381453 - For strict multiset partitions with distinct sums (A321469) see A381637. %Y A381453 - For set systems with distinct sums (A381633, zeros A381806) see A381634. %Y A381453 - For sets of constant multisets with distinct sums (A381635, zeros A381636) see A381716. %Y A381453 More on multiset partitions into constant blocks: A006171, A279784, A295935. %Y A381453 A000041 counts integer partitions, strict A000009. %Y A381453 A000040 lists the primes. %Y A381453 A003963 gives product of prime indices. %Y A381453 A055396 gives least prime index, greatest A061395. %Y A381453 A056239 adds up prime indices, row sums of A112798. %Y A381453 A122111 represents conjugation in terms of Heinz numbers. %Y A381453 A265947 counts refinement-ordered pairs of integer partitions. %Y A381453 Cf. A000720, A000961, A001222, A002577, A018818, A213242, A213385, A213427, A275870, A299200, A300273, A300385. %K A381453 nonn %O A381453 1,3 %A A381453 _Gus Wiseman_, Mar 08 2025