cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381455 Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into a multiset of constant multisets.

This page as a plain text file.
%I A381455 #19 Apr 01 2025 12:16:27
%S A381455 1,1,1,2,1,1,1,3,2,1,1,2,1,1,1,5,1,2,1,2,1,1,1,3,2,1,3,2,1,1,1,7,1,1,
%T A381455 1,4,1,1,1,3,1,1,1,2,2,1,1,5,2,2,1,2,1,3,1,3,1,1,1,2,1,1,2,11,1,1,1,2,
%U A381455 1,1,1,6,1,1,2,2,1,1,1,5,5,1,1,2,1,1,1
%N A381455 Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into a multiset of constant multisets.
%C A381455 First differs from A000688 at a(144) = 9, A000688(144) = 10.
%C A381455 First differs from A295879 at a(128) = 15, A295879(128) = 13.
%C A381455 Also the number of multisets that can be obtained by taking the sums of prime indices of each factor in a factorization of n into prime powers > 1.
%C A381455 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A381455 A multiset partition can be regarded as an arrow in the ranked poset of integer partitions. For example, we have {{1},{1,2},{1,3},{1,2,3}}: {1,1,1,1,2,2,3,3} -> {1,3,4,6}, or (33221111) -> (6431) (depending on notation).
%C A381455 Multisets of constant multisets are generally not transitive. For example, we have arrows: {{1,1},{2}}: {1,1,2} -> {2,2} and {{2,2}}: {2,2} -> {4}, but there is no multiset of constant multisets {1,1,2} -> {4}.
%H A381455 Robert Price, <a href="/A381455/b381455.txt">Table of n, a(n) for n = 1..1000</a>
%F A381455 a(s) = 1 for any squarefree number s.
%F A381455 a(p^k) = A000041(k) for any prime p.
%e A381455 The prime indices of 36 are {1,1,2,2}, with the following 4 partitions into a multiset of constant multisets:
%e A381455   {{1,1},{2,2}}
%e A381455   {{1},{1},{2,2}}
%e A381455   {{2},{2},{1,1}}
%e A381455   {{1},{1},{2},{2}}
%e A381455 with block-sums: {2,4}, {1,1,4}, {2,2,2}, {1,1,2,2}, which are all different, so a(36) = 4.
%e A381455 The prime indices of 144 are {1,1,1,1,2,2}, with the following 10 partitions into a multiset of constant multisets:
%e A381455   {{2,2},{1,1,1,1}}
%e A381455   {{1},{2,2},{1,1,1}}
%e A381455   {{2},{2},{1,1,1,1}}
%e A381455   {{1,1},{1,1},{2,2}}
%e A381455   {{1},{1},{1,1},{2,2}}
%e A381455   {{1},{2},{2},{1,1,1}}
%e A381455   {{2},{2},{1,1},{1,1}}
%e A381455   {{1},{1},{1},{1},{2,2}}
%e A381455   {{1},{1},{2},{2},{1,1}}
%e A381455   {{1},{1},{1},{1},{2},{2}}
%e A381455 with block-sums: {4,4}, {1,3,4}, {2,2,4}, {2,2,4}, {1,1,2,4}, {1,2,2,3}, {2,2,2,2}, {1,1,1,1,4}, {1,1,2,2,2}, {1,1,1,1,2,2}, of which 9 are distinct, so a(144) = 9.
%e A381455 The a(n) partitions for n = 4, 8, 16, 32, 36, 64, 72, 128:
%e A381455   (2)   (3)    (4)     (5)      (42)    (6)       (43)     (7)
%e A381455   (11)  (21)   (22)    (32)     (222)   (33)      (322)    (43)
%e A381455         (111)  (31)    (41)     (411)   (42)      (421)    (52)
%e A381455                (211)   (221)    (2211)  (51)      (2221)   (61)
%e A381455                (1111)  (311)            (222)     (4111)   (322)
%e A381455                        (2111)           (321)     (22111)  (331)
%e A381455                        (11111)          (411)              (421)
%e A381455                                         (2211)             (511)
%e A381455                                         (3111)             (2221)
%e A381455                                         (21111)            (3211)
%e A381455                                         (111111)           (4111)
%e A381455                                                            (22111)
%e A381455                                                            (31111)
%e A381455                                                            (211111)
%e A381455                                                            (1111111)
%t A381455 hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
%t A381455 sqfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sqfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],PrimePowerQ]}]];
%t A381455 Table[Length[Union[Sort[hwt/@#]&/@sqfacs[n]]],{n,100}]
%Y A381455 Before taking sums we had A000688.
%Y A381455 Positions of 1 are A005117.
%Y A381455 There is a chain from the prime indices of n to a singleton iff n belongs to A300273.
%Y A381455 The lower version is A381453.
%Y A381455 For distinct blocks we have A381715, before sum A050361.
%Y A381455 For distinct block-sums we have A381716, before sums A381635 (zeros A381636).
%Y A381455 Other multiset partitions of prime indices:
%Y A381455 - For multiset partitions (A001055) see A317141 (upper), A300383 (lower).
%Y A381455 - For strict multiset partitions (A045778) see A381452.
%Y A381455 - For set multipartitions (A050320) see A381078 (upper), A381454 (lower).
%Y A381455 - For set systems (A050326) see A381441 (upper).
%Y A381455 - For strict multiset partitions with distinct sums (A321469) see A381637.
%Y A381455 - For set systems with distinct sums (A381633) see A381634, A293243.
%Y A381455 More on multiset partitions into constant blocks: A006171, A279784, A295935.
%Y A381455 A000041 counts integer partitions, strict A000009.
%Y A381455 A000040 lists the primes.
%Y A381455 A003963 gives product of prime indices.
%Y A381455 A055396 gives least prime index, greatest A061395.
%Y A381455 A056239 adds up prime indices, row sums of A112798.
%Y A381455 A122111 represents conjugation in terms of Heinz numbers.
%Y A381455 A265947 counts refinement-ordered pairs of integer partitions.
%Y A381455 Cf. A000720, A001222, A002577, A002846, A018818, A213242, A213427, A275870, A289078, A299200, A299202, A300385.
%K A381455 nonn
%O A381455 1,4
%A A381455 _Gus Wiseman_, Mar 06 2025