This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381455 #19 Apr 01 2025 12:16:27 %S A381455 1,1,1,2,1,1,1,3,2,1,1,2,1,1,1,5,1,2,1,2,1,1,1,3,2,1,3,2,1,1,1,7,1,1, %T A381455 1,4,1,1,1,3,1,1,1,2,2,1,1,5,2,2,1,2,1,3,1,3,1,1,1,2,1,1,2,11,1,1,1,2, %U A381455 1,1,1,6,1,1,2,2,1,1,1,5,5,1,1,2,1,1,1 %N A381455 Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into a multiset of constant multisets. %C A381455 First differs from A000688 at a(144) = 9, A000688(144) = 10. %C A381455 First differs from A295879 at a(128) = 15, A295879(128) = 13. %C A381455 Also the number of multisets that can be obtained by taking the sums of prime indices of each factor in a factorization of n into prime powers > 1. %C A381455 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A381455 A multiset partition can be regarded as an arrow in the ranked poset of integer partitions. For example, we have {{1},{1,2},{1,3},{1,2,3}}: {1,1,1,1,2,2,3,3} -> {1,3,4,6}, or (33221111) -> (6431) (depending on notation). %C A381455 Multisets of constant multisets are generally not transitive. For example, we have arrows: {{1,1},{2}}: {1,1,2} -> {2,2} and {{2,2}}: {2,2} -> {4}, but there is no multiset of constant multisets {1,1,2} -> {4}. %H A381455 Robert Price, <a href="/A381455/b381455.txt">Table of n, a(n) for n = 1..1000</a> %F A381455 a(s) = 1 for any squarefree number s. %F A381455 a(p^k) = A000041(k) for any prime p. %e A381455 The prime indices of 36 are {1,1,2,2}, with the following 4 partitions into a multiset of constant multisets: %e A381455 {{1,1},{2,2}} %e A381455 {{1},{1},{2,2}} %e A381455 {{2},{2},{1,1}} %e A381455 {{1},{1},{2},{2}} %e A381455 with block-sums: {2,4}, {1,1,4}, {2,2,2}, {1,1,2,2}, which are all different, so a(36) = 4. %e A381455 The prime indices of 144 are {1,1,1,1,2,2}, with the following 10 partitions into a multiset of constant multisets: %e A381455 {{2,2},{1,1,1,1}} %e A381455 {{1},{2,2},{1,1,1}} %e A381455 {{2},{2},{1,1,1,1}} %e A381455 {{1,1},{1,1},{2,2}} %e A381455 {{1},{1},{1,1},{2,2}} %e A381455 {{1},{2},{2},{1,1,1}} %e A381455 {{2},{2},{1,1},{1,1}} %e A381455 {{1},{1},{1},{1},{2,2}} %e A381455 {{1},{1},{2},{2},{1,1}} %e A381455 {{1},{1},{1},{1},{2},{2}} %e A381455 with block-sums: {4,4}, {1,3,4}, {2,2,4}, {2,2,4}, {1,1,2,4}, {1,2,2,3}, {2,2,2,2}, {1,1,1,1,4}, {1,1,2,2,2}, {1,1,1,1,2,2}, of which 9 are distinct, so a(144) = 9. %e A381455 The a(n) partitions for n = 4, 8, 16, 32, 36, 64, 72, 128: %e A381455 (2) (3) (4) (5) (42) (6) (43) (7) %e A381455 (11) (21) (22) (32) (222) (33) (322) (43) %e A381455 (111) (31) (41) (411) (42) (421) (52) %e A381455 (211) (221) (2211) (51) (2221) (61) %e A381455 (1111) (311) (222) (4111) (322) %e A381455 (2111) (321) (22111) (331) %e A381455 (11111) (411) (421) %e A381455 (2211) (511) %e A381455 (3111) (2221) %e A381455 (21111) (3211) %e A381455 (111111) (4111) %e A381455 (22111) %e A381455 (31111) %e A381455 (211111) %e A381455 (1111111) %t A381455 hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]]; %t A381455 sqfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sqfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],PrimePowerQ]}]]; %t A381455 Table[Length[Union[Sort[hwt/@#]&/@sqfacs[n]]],{n,100}] %Y A381455 Before taking sums we had A000688. %Y A381455 Positions of 1 are A005117. %Y A381455 There is a chain from the prime indices of n to a singleton iff n belongs to A300273. %Y A381455 The lower version is A381453. %Y A381455 For distinct blocks we have A381715, before sum A050361. %Y A381455 For distinct block-sums we have A381716, before sums A381635 (zeros A381636). %Y A381455 Other multiset partitions of prime indices: %Y A381455 - For multiset partitions (A001055) see A317141 (upper), A300383 (lower). %Y A381455 - For strict multiset partitions (A045778) see A381452. %Y A381455 - For set multipartitions (A050320) see A381078 (upper), A381454 (lower). %Y A381455 - For set systems (A050326) see A381441 (upper). %Y A381455 - For strict multiset partitions with distinct sums (A321469) see A381637. %Y A381455 - For set systems with distinct sums (A381633) see A381634, A293243. %Y A381455 More on multiset partitions into constant blocks: A006171, A279784, A295935. %Y A381455 A000041 counts integer partitions, strict A000009. %Y A381455 A000040 lists the primes. %Y A381455 A003963 gives product of prime indices. %Y A381455 A055396 gives least prime index, greatest A061395. %Y A381455 A056239 adds up prime indices, row sums of A112798. %Y A381455 A122111 represents conjugation in terms of Heinz numbers. %Y A381455 A265947 counts refinement-ordered pairs of integer partitions. %Y A381455 Cf. A000720, A001222, A002577, A002846, A018818, A213242, A213427, A275870, A289078, A299200, A299202, A300385. %K A381455 nonn %O A381455 1,4 %A A381455 _Gus Wiseman_, Mar 06 2025