This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381467 #16 Feb 25 2025 13:13:38 %S A381467 1,1,1,1,1,2,2,3,5,6,13,1,11,33,4,23,89,21,47,240,85,2,106,657,345,16, %T A381467 235,1806,1289,109,551,5026,4713,627,6,1301,13999,16622,3259,64,3159, %U A381467 39260,57535,15576,598,7741,110381,195212,69983,4394,18,19320,311465,653318,299354,28286,295 %N A381467 Triangle read by rows: T(n,k) is the number of simple connected graphs on n unlabeled nodes with k cycles and no node a member of more than one cycle, 0 <= k <= floor(n/3). %C A381467 All such graphs are cactus graphs (with bridges allowed). %H A381467 Andrew Howroyd, <a href="/A381467/b381467.txt">Table of n, a(n) for n = 0..1750</a> (rows 0..100) %H A381467 R. J. Mathar, <a href="http://arxiv.org/abs/1808.06264">Counting connected graphs without overlapping cycles</a>, arXiv:1808.06264 [math.CO] (2018). %H A381467 Wikipedia, <a href="https://en.wikipedia.org/wiki/Cactus_graph">Cactus graph</a>. %H A381467 <a href="/index/Ca#cacti">Index entries for sequences related to cacti</a>. %F A381467 T(3*n, n) = A380634(n). %e A381467 Triangle begins: %e A381467 1; %e A381467 1; %e A381467 1; %e A381467 1, 1; %e A381467 2, 2; %e A381467 3, 5; %e A381467 6, 13, 1; %e A381467 11, 33, 4; %e A381467 23, 89, 21; %e A381467 47, 240, 85, 2; %e A381467 106, 657, 345, 16; %e A381467 235, 1806, 1289, 109; %e A381467 551, 5026, 4713, 627, 6; %e A381467 1301, 13999, 16622, 3259, 64; %e A381467 3159, 39260, 57535, 15576, 598; %e A381467 ... %o A381467 (PARI) %o A381467 EulerMTS(p)={my(n=serprec(p,x)-1,vars=variables(p)); exp(sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i))} %o A381467 raise(p,d) = {my(n=serprec(p,x)-1); substvec(p + O(x^(n\d+1)), [x, y], [x^d,y^d])} %o A381467 R(n,y)={my(g=x+O(x^2)); for(n=2, n, my(p=x*EulerMTS(g), p2=raise(p,2)); g=p + p*y*(p^2/(1 - p) + (1 + p)*p2/(1 - p2))/2); g} %o A381467 G(n,y=1)={my(g=R(n,y), p = x*EulerMTS(g) + O(x*x^n)); %o A381467 my( r=((1 + p)^2/(1 - raise(p,2)) - 1)/2 ); %o A381467 my( c=-sum(d=1, n, eulerphi(d)/d*log(raise(1-p,d))) ); %o A381467 1 + p + (raise(g,2) - g^2 + y*(r + c - 2*p - p^2 - raise(p,2)))/2 } %o A381467 T(n)={[Vecrev(p) | p<-Vec(G(n,y))]} %o A381467 {my(A=T(15)); for(i=1, #A, print(A[i]))} %Y A381467 Row sums are A381468. %Y A381467 Columns k=0..2 are A000055, A001429, A381470. %Y A381467 Cf. A380631, A380634. %K A381467 nonn,tabf %O A381467 0,6 %A A381467 _Andrew Howroyd_, Feb 24 2025