This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381476 #9 Mar 27 2025 21:31:40 %S A381476 1,1,1,1,2,1,1,3,3,1,4,6,2,1,5,10,6,1,6,15,14,1,7,21,26,2,1,8,28,44, %T A381476 10,1,9,36,68,26,1,10,45,100,60,1,11,55,140,110,1,12,66,190,190,4,1, %U A381476 13,78,250,304,22,1,14,91,322,466,68,1,15,105,406,676,156 %N A381476 Triangle read by rows: T(n,k) is the number of subsets of {1..n} with k elements such that every pair of distinct elements has a different difference, 0 <= k <= A143824(n). %C A381476 Equivalently, a(n) is the number of Sidon sets of {1..n} of size k. %H A381476 Andrew Howroyd, <a href="/A381476/b381476.txt">Table of n, a(n) for n = 0..464</a> (rows 0..60) %H A381476 Wikipedia, <a href="https://en.wikipedia.org/wiki/Sidon_sequence">Sidon sequence</a>. %H A381476 <a href="/index/Go#Golomb">Index entries for sequences related to Golomb rulers</a>. %F A381476 T(n,A143824(n)) = A382395(n). %e A381476 Triangle begins: %e A381476 0 | 1; %e A381476 1 | 1, 1; %e A381476 2 | 1, 2, 1; %e A381476 3 | 1, 3, 3; %e A381476 4 | 1, 4, 6, 2; %e A381476 5 | 1, 5, 10, 6; %e A381476 6 | 1, 6, 15, 14; %e A381476 7 | 1, 7, 21, 26, 2; %e A381476 8 | 1, 8, 28, 44, 10; %e A381476 9 | 1, 9, 36, 68, 26; %e A381476 10 | 1, 10, 45, 100, 60; %e A381476 11 | 1, 11, 55, 140, 110; %e A381476 12 | 1, 12, 66, 190, 190, 4; %e A381476 ... %o A381476 (PARI) %o A381476 row(n)={ %o A381476 local(L=List()); %o A381476 my(recurse(k,r,b,w)= %o A381476 if(k > n, if(r>=#L,listput(L,0)); L[1+r]++, %o A381476 self()(k+1, r, b, w); %o A381476 b+=1<<k; if(!bitand(w,b<<k), self()(k+1, r+1, b, w + (b<<k))); %o A381476 ); %o A381476 ); %o A381476 recurse(1,0,0,0); %o A381476 Vec(L) %o A381476 } %Y A381476 Columns 0..5 are A000012, A001477, A161680, A212964(n-1), A241688, A241689, A241690. %Y A381476 Row sums are A143823. %Y A381476 Cf. A003022, A143824, A325879, A382395. %K A381476 nonn,tabf %O A381476 0,5 %A A381476 _Andrew Howroyd_, Mar 27 2025