cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381483 Area of the unique primitive Pythagorean triple whose inradius is A000108(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

This page as a plain text file.
%I A381483 #13 May 01 2025 21:43:23
%S A381483 6,6,30,330,6090,153510,4652340,158459730,5854550130,229936985850,
%T A381483 9477338186316,406314955623486,18001068994899900,820015284879972900,
%U A381483 38258577340819383240,1822437624604345219170,88405834606456644170370,4358080082619077400555090,217935771356984568896708700
%N A381483 Area of the unique primitive Pythagorean triple whose inradius is A000108(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
%D A381483 Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2025.
%H A381483 Miguel-Ángel Pérez García-Ortega, <a href="/A381483/a381483.pdf">El Libro de las Ternas Pitagóricas</a>
%F A381483 a(n) = (A383251(n,1) * A383251(n,2))/2.
%F A381483 a(n) = A000108(n)*(A000108(n) + 1)*(2*A000108(n) + 1).
%e A381483 For n=2, the short leg is A382608(2,1) = 3 and the long leg is A382608(2,2) = 4 so the area is then a(2) = (3 * 4 )/2 = 6.
%t A381483 a=Table[(2n)!/(n!(n+1)!),{n,0,18}];Apply[Join,Map[{#(#+1)(2#+1)}&,a]]
%Y A381483 Cf. A000108, A383251, A382114.
%K A381483 nonn,easy
%O A381483 0,1
%A A381483 _Miguel-Ángel Pérez García-Ortega_, Apr 22 2025