This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381496 #23 Apr 02 2025 03:05:25 %S A381496 0,0,3,28,133,510,1790,5997,19639,63541,204037,652173,2078320,6609816, %T A381496 20993381,66612867,211222374,669428537,2120835892,6717184256, %U A381496 21270247404,67341572823,213173925948,674739560651,2135491756895,6758117426102,21385762133815,67670426242420 %N A381496 Number of powerful numbers that are not prime powers that do not exceed 10^n. %C A381496 Number of k such that omega(k) > 1 and rad(k)^2 | k (i.e., in A286708) that do not exceed 10^n, where omega = A001221 and rad = A007947. %F A381496 a(n) = -1 + Sum_{k=1..10^(n/3)} [rad(k)=k]*floor(sqrt(10^n/k^3)) - Sum_{k=2..n*log_2(10)} pi(10^(n/k)). %F A381496 a(n) = -1 + A118896(n) - A267574(n). %F A381496 a(n) < A381391(n) for n > 0 since A286708 is a proper subset of A126706. %e A381496 Let S = A286708 = A001694 \ A246547 = A126706 \ A001694. %e A381496 a(0) = a(1) = 0 since 36 is the smallest term in S. %e A381496 a(2) = 3 since S(1..3) = {36, 72, 100}. %e A381496 a(3) = 28 since S(4..28) = {108, 144, ..., 972, 1000}. %e A381496 a(4) = 133 since S(29..133) = {1089, 1125, ..., 9801, 10000}, etc. %t A381496 Table[Sum[Boole[SquareFreeQ[k]]*Floor[Sqrt[10^n/k^3]], {k, 10^(n/3)}] - Sum[PrimePi[10^(n/k)], {k, 2, n*Log2[10]}] - 1, {n, 0, 12}] %o A381496 (Python) %o A381496 from math import isqrt %o A381496 from sympy import primepi, integer_nthroot, mobius %o A381496 def A381496(n): %o A381496 def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) %o A381496 m, l = 10**n, 0 %o A381496 j, c = isqrt(m), -1-sum(primepi(integer_nthroot(m,k)[0]) for k in range(2,m.bit_length())), %o A381496 while j>1: %o A381496 k2 = integer_nthroot(m//j**2,3)[0]+1 %o A381496 w = squarefreepi(k2-1) %o A381496 c += j*(w-l) %o A381496 l, j = w, isqrt(m//k2**3) %o A381496 return c+squarefreepi(integer_nthroot(m,3)[0])-l # _Chai Wah Wu_, Feb 25 2025 %Y A381496 Cf. A001694, A118896, A126706, A246547, A267574, A286708, A380430, A380431, A381391. %K A381496 nonn %O A381496 0,3 %A A381496 _Michael De Vlieger_, Feb 25 2025