This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381497 #15 Jun 04 2025 10:38:37 %S A381497 0,0,0,0,0,9,0,6,6,25,0,36,0,49,45,42,0,81,0,100,84,121,0,144,45,169, %T A381497 96,196,0,315,0,210,198,289,175,354,0,361,273,430,0,609,0,484,435,529, %U A381497 0,648,140,655,459,676,0,801,385,826,570,841,0,1260,0,961,798 %N A381497 a(n) = sum of numbers k < n such that 1 < gcd(k,n) and rad(k) != rad(n), where rad = A007947. %C A381497 Analogous to A066760(n), the sum of row n of A133995, and A381499(n), sum of row n of A272619. %H A381497 Michael De Vlieger, <a href="/A381497/b381497.txt">Table of n, a(n) for n = 1..16384</a> %H A381497 Michael De Vlieger, <a href="/A381497/a381497.png">Log log scatterplot of a(n)</a>, n = 6..2^14, ignoring a(n) = 0, showing a(n) for prime power n in gold, a(n) for squarefree n in green, otherwise blue. %F A381497 a(n) is the sum of row n of A381094. %F A381497 a(n) = 0 for prime n and n = 4. %F A381497 a(n) = A067392(n) - A381498(n). %e A381497 Table of n and a(n) for select n, showing prime power decomposition of both and row n of A381094: %e A381497 n Factor(n) a(n) Factor(a(n)) Row n of A381094 %e A381497 ------------------------------------------------------------------- %e A381497 6 2 * 3 9 3^2 {2,3,4} %e A381497 8 2^3 6 2 * 3 {6} %e A381497 9 3^2 6 2 * 3 {6} %e A381497 10 2 * 5 25 5^2 {2,4,5,6,8} %e A381497 12 2^2 * 3 36 2^2 * 3^2 {2,3,4,8,9,10} %e A381497 14 2 * 7 49 7^2 {2,4,6,7,8,10,12} %e A381497 15 3 * 5 45 3^2 * 5 {3,5,6,9,10,12} %e A381497 16 2^4 42 2 * 3 * 7 {6,10,12,14} %e A381497 18 2 * 3^2 81 3^4 {2,3,4,8,9,10,14,15,16} %e A381497 20 2^2 * 5 100 2^2 * 5^2 {2,4,5,6,8,12,14,15,16,18} %e A381497 21 3 * 7 84 2^2 * 3 * 7 {3,6,7,9,12,14,15,18} %e A381497 22 2 * 11 121 11^2 {2,4,6,8,10,11,12,14,16,18,20} %e A381497 24 2^3 * 3 144 2^4 * 3^2 {2,3,4,8,9,10,14,15,16,20,21,22} %e A381497 a(6) = (2+4) + (3) = 9, %e A381497 a(n) = 6 for n in {8, 9} since 6 is the only number less than n that shares a factor with n but does not have the same squarefree kernel as n. %e A381497 a(10) = (2+4+6+8) + (5) = 25. %e A381497 a(12) = (2+4+8+10) + (3+9) = 36. %e A381497 a(14) = (2+4+6+8+10+12) + (7) = 49. %e A381497 a(15) = (3+6+9+12) + (5+10) = 45. %e A381497 a(16) = (6+10+12+14) = 42, etc. %t A381497 rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; Table[r = rad[n]; Total@ Select[Range[n], Nor[CoprimeQ[#, n], rad[#] == r] &], {n, 120}] %Y A381497 Cf. A007947, A038566, A066760, A067392, A121998, A369609, A381094, A381096, A381498, A381499. %K A381497 nonn %O A381497 1,6 %A A381497 _Michael De Vlieger_, Mar 02 2025