This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381498 #11 Jun 04 2025 10:38:48 %S A381498 1,2,3,6,5,6,7,14,12,10,11,18,13,14,15,30,17,36,19,30,21,22,23,60,30, %T A381498 26,39,42,29,30,31,62,33,34,35,96,37,38,39,70,41,42,43,66,60,46,47, %U A381498 144,56,120,51,78,53,198,55,98,57,58,59,90,61,62,84,126,65,66 %N A381498 a(n) = sum of numbers k <= n that have the same squarefree kernel as n. %C A381498 Analogous to A244974(n) = sum of row n of A162306; row n of A369609 is a proper subset of A162306. %H A381498 Michael De Vlieger, <a href="/A381498/b381498.txt">Table of n, a(n) for n = 1..16384</a> %H A381498 Michael De Vlieger, <a href="/A381498/a381498.png">Log log scatterplot of a(n)</a>, n = 1..2^16, showing a(n) for prime n in red, squarefree composite n in green, proper prime powers n in gold, powerful n that are not prime powers in magenta, and other numbers in blue. %F A381498 a(n) = sum of row n of A369609. %F A381498 For squarefree k, a(k) = k. %F A381498 For prime power p^m, a(p^m) = Sum_{i=1..m} p^i. %e A381498 n a(n) Factor(a(n)) Row n of A369609 %e A381498 ---------------------------------------- %e A381498 4 6 2 * 3 {2, 4} %e A381498 8 14 2 * 7 {2, 4, 8} %e A381498 9 12 2^2 * 3 {3, 9} %e A381498 12 18 2 * 3^2 {6, 12} %e A381498 16 30 2 * 3 * 5 {2, 4, 8, 16} %e A381498 18 36 2^2 * 3^2 {6, 12, 18} %e A381498 20 30 2 * 3 * 5 {10, 20} %e A381498 24 60 2^2 * 3 * 5 {6, 12, 18, 24} %e A381498 25 30 2 * 3 * 5 {5, 25} %e A381498 27 39 3 * 13 {3, 9, 27} %e A381498 28 42 2 * 3 * 7 {14, 28} %e A381498 32 62 2 * 31 {2, 4, 8, 16, 32} %e A381498 36 96 2^5 * 3 {6, 12, 18, 24, 36} %t A381498 rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; Table[r = rad[n]; Total@ Select[Range[n], rad[#] == r &], {n, 120}] %o A381498 (PARI) rad(n) = factorback(factorint(n)[, 1]); %o A381498 a(n) = my(r=rad(n)); sum(k=1, n, if(rad(k)==r, k)); \\ _Michel Marcus_, Mar 03 2025 %Y A381498 Cf. A007947, A008479, A244974, A369609. %K A381498 nonn %O A381498 1,2 %A A381498 _Michael De Vlieger_, Mar 03 2025