This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381499 #11 Jun 04 2025 10:39:01 %S A381499 0,0,0,0,0,0,0,6,6,6,0,10,0,28,28,42,0,39,0,65,65,80,0,102,45,126,96, %T A381499 159,0,111,0,210,148,210,138,253,0,280,221,338,0,342,0,411,366,444,0, %U A381499 547,140,563,403,601,0,700,344,708,512,750,0,751,0,868,703,930 %N A381499 a(n) = sum of numbers k < n such that 1 < gcd(k,n) < k and rad(k) does not divide n, where rad = A007947. %C A381499 Analogous to A066760(n), the sum of row n of A133995, and A381497(n), sum of row n of A381094. %H A381499 Michael De Vlieger, <a href="/A381499/b381499.txt">Table of n, a(n) for n = 1..16384</a> %H A381499 Michael De Vlieger, <a href="/A381499/a381499.png">Log log scatterplot of a(n)</a>, n = 8..2^14, ignoring a(n) = 0, showing a(n) for prime power n in gold, a(n) for squarefree n in green, otherwise blue. %F A381499 a(n) is the sum of row n of A272619. %F A381499 a(n) = 0 for prime n, n = 4, and n = 6. %e A381499 Table of n and a(n) for select n, showing prime power decomposition of the latter and row n of A272619: %e A381499 n a(n) Factor(a(n)) Row n of A272619 %e A381499 ----------------------------------------------------- %e A381499 8 6 2 * 3 {6} %e A381499 9 6 2 * 3 {6} %e A381499 10 6 2 * 3 {6} %e A381499 12 10 2 * 5 {10} %e A381499 14 28 2^2 * 7 {6,10,12} %e A381499 15 28 2^2 * 7 {6,10,12} %e A381499 16 42 2 * 3 * 7 {6,10,12,14} %e A381499 18 39 3 * 13 {10,14,15} %e A381499 20 65 5 * 13 {6,12,14,15,18} %e A381499 21 65 5 * 13 {6,12,14,15,18} %e A381499 22 80 2^4 * 5 {6,10,12,14,18,20} %e A381499 24 102 2 * 3 * 17 {10,14,15,20,21,22} %e A381499 25 45 3^2 * 5 {10,15,20} %e A381499 26 126 2 * 3^2 * 7 {6,10,12,14,18,20,22,24} %e A381499 27 96 2^5 * 3 {6,12,15,18,21,24} %e A381499 28 159 3 * 53 {6,10,12,18,20,21,22,24,26} %t A381499 rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; Table[r = rad[n]; If[PrimeQ[n], 0, Total@ Select[Range[n], And[1 < GCD[#, n] < #, ! Divisible[n, rad[#]]] &]], {n, 120}] %Y A381499 Cf. A007947, A038566, A066760, A121998, A243823, A272619, A381497. %K A381499 nonn %O A381499 1,8 %A A381499 _Michael De Vlieger_, Mar 02 2025