cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381504 Expansion of e.g.f. exp(-x/4) / (1-4*x)^(1/16).

This page as a plain text file.
%I A381504 #15 Apr 23 2025 10:17:25
%S A381504 1,0,1,8,99,1616,32815,797256,22552873,728069984,26413495281,
%T A381504 1063820511080,47098650935611,2273501091042288,118834339196361919,
%U A381504 6686552010270859496,402975635704196998545,25897425517232941658816,1767875520978811381774753,127753191169784612437640904
%N A381504 Expansion of e.g.f. exp(-x/4) / (1-4*x)^(1/16).
%F A381504 a(n) = (-1)^n * n! * Sum_{k=0..n} (1/4)^(n-2*k) * binomial(-1/16,k)/(n-k)!.
%F A381504 a(n) = (n-1) * (4*a(n-1) + a(n-2)) for n > 1.
%F A381504 a(n) ~ sqrt(Pi) * 2^(2*n + 1/2) * n^(n - 7/16) / (Gamma(1/16) * exp(n + 1/16)). - _Vaclav Kotesovec_, Apr 23 2025
%o A381504 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-x/4)/(1-4*x)^(1/16)))
%Y A381504 Cf. A000166, A383313, A381484.
%K A381504 nonn
%O A381504 0,4
%A A381504 _Seiichi Manyama_, Apr 23 2025