This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381507 #25 Apr 27 2025 09:50:01 %S A381507 2,1365,73815,6702045,8788065,26241285,32426205,237539445,269409855, %T A381507 445317015,475231515,709296105,1085962395,1329722835,1447857915, %U A381507 2403281595,3255993615,5145721455,5254163355,5824953435,6560751435,7176232455,7703697855,8332635255,8542035645 %N A381507 Squarefree numbers k such that the sum of 1/(p-1) over the prime divisors p of k is 1. %C A381507 Squarefree terms of A380888. %C A381507 All terms > 2 are odd. %e A381507 1365 is a term because 1365 = 3 * 5 * 7 * 13 and 1/(3-1) + 1/(5-1) + 1/(7-1) + 1/(13-1) = 1/2 + 1/4 + 1/6 + 1/12 = 1. %p A381507 filter:= proc(n) local F,t; %p A381507 F:=ifactors(n)[2]; %p A381507 if F[..,2] <> [1$nops(F)] then return false fi; %p A381507 add(1/(t-1),t=F[..,1]) = 1 %p A381507 end proc: %p A381507 select(filter, [2, seq(i,i=1..10^8,2)]); %Y A381507 Intersection of A005117 and A380888. %K A381507 nonn %O A381507 1,1 %A A381507 _Robert Israel_, Apr 23 2025 %E A381507 More terms from _Giorgos Kalogeropoulos_, Apr 27 2025