This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381508 #40 Apr 26 2025 10:25:06 %S A381508 1,7,728,14,208,728,342,28,2184,1456,354312,728,9520,2394,1456,56, %T A381508 709928,2184,5227320,1456,124488,354312,279840,728,1040,9520,6552, %U A381508 2394,243880,1456,71040,112,4606056,4969496,35568,2184,20362908,5227320,123760,1456,201840 %N A381508 Pisano period of Hexanacci numbers (A001592) mod n. %H A381508 Chai Wah Wu, <a href="/A381508/b381508.txt">Table of n, a(n) for n = 1..222</a> %H A381508 Martin Guerra and Doron Zeilberger, <a href="http://sites.math.rutgers.edu/~zeilberg/tokhniot/PisanoP.txt">Maple program</a> %p A381508 # load programs from linked file: %p A381508 seq(Pis([[0$5, 1],[1$6]],n,400000), n=1..16); %o A381508 (Python) %o A381508 from math import lcm %o A381508 from functools import lru_cache %o A381508 from sympy import factorint %o A381508 @lru_cache(maxsize=None) %o A381508 def A381508(n): %o A381508 if n == 1: %o A381508 return 1 %o A381508 f = factorint(n).items() %o A381508 if len(f) > 1: %o A381508 return lcm(*(A381508(a**b) for a,b in f)) %o A381508 else: %o A381508 k, x = 1, (0,0,0,0,1,1) %o A381508 while x != (0,0,0,0,0,1): %o A381508 k += 1 %o A381508 x = x[1:]+(sum(x) % n,) %o A381508 return k # _Chai Wah Wu_, Apr 25 2025 %Y A381508 Cf. A001175, A001592. %K A381508 nonn %O A381508 1,2 %A A381508 _Martin Guerra_ and _Doron Zeilberger_, Apr 24 2025 %E A381508 a(17)-a(41) from _Alois P. Heinz_, Apr 25 2025