A381517 Perimeter of the Sierpiński carpet at iteration n.
4, 16, 80, 496, 3536, 26992, 212048, 1684720, 13442768, 107437168, 859182416, 6872514544, 54977282000, 439809752944, 3518452514384, 28147543587568, 225180119118032, 1801440264196720, 14411520047331152, 115292154179921392, 922337214843187664, 7378697662956950896, 59029581136289955920, 472236648588222693616
Offset: 0
Examples
For n=0, a(0) = 4, the geometric representation is a square. For n=3, a(3) = 496.
Links
- Jakub Buczak, Perimeter of the Sierpiński Carpet
- Michael Small, Brendan Florio, and Phillip Donald Fawell, The use of the perimeter area method to calculate the fractal dimension of aggregates, see section 3.2 equation (27) where a(n) = P_s(n+1) with scale factor g_1 = 1.
- Eric Weisstein's World of Mathematics, Sierpiński Carpet
Programs
-
Python
a = lambda n: (4 * (4 * 3**n + 8**n)) // 5
Formula
a(n) = (4/5)*(4*3^n + 8^n).
a(n) = A365606(n+1) - 4.
Comments