This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381522 #43 May 27 2025 10:34:48 %S A381522 1,1,1,1,2,1,1,1,1,2,1,3,1,1,1,2,1,1,1,1,2,4,1,1,3,1,1,2,1,1,1,1,2,1, %T A381522 5,1,1,3,1,2,1,1,1,1,2,4,1,1,1,1,2,3,6,1,1,1,1,2,1,1,1,1,2,1,3,1,1,1, %U A381522 2,4,1,7,1,5,1,1,2,1,1,3,1,1,2,1,1,1,1,2,1,1,1,3,1,2,4,8,1,1,1,1,2,1,1,1,1,2,3,6 %N A381522 Sequence where k is appended after every k^2 occurrences of 1, with multiple values following a 1 listed in order. %C A381522 The frequencies of the terms follow the zeta distribution with parameter value 2. %C A381522 The geometric mean approaches exp(-zeta'(2)/zeta(2)) A381456 in the limit. In general, if the sequence was formed by every k^s occurrences, it would approach e^(-zeta'(s)/zeta(s)). %C A381522 Considered as an irregular triangle, the n-th row lists the divisors of the square root of the largest square dividing n. %H A381522 Jwalin Bhatt, <a href="/A381522/b381522.txt">Table of n, a(n) for n = 1..10000</a> %H A381522 Wikipedia, <a href="https://en.wikipedia.org/wiki/Zeta_distribution">Zeta distribution</a> %e A381522 After every 4 ones we see a 2, after every 9 ones we see a 3 and so on. %o A381522 (Python) %o A381522 from itertools import islice %o A381522 def zeta_distribution_generator(): %o A381522 num_ones, num_reached = 0, 1 %o A381522 while num_ones := num_ones+1: %o A381522 yield 1 %o A381522 for num in range(2, num_reached+2): %o A381522 if num_ones % (num*num) == 0: %o A381522 yield num %o A381522 num_reached += num == num_reached+1 %o A381522 A381522 = list(islice(zeta_distribution_generator(), 120)) %o A381522 (PARI) lista(n)={my(L=List()); for(n=1, n, fordiv(sqrtint(n/core(n)), d, listput(L,d))); Vec(L[1..n])} \\ _Andrew Howroyd_, Feb 26 2025 %Y A381522 Cf. A000188, A084580, A381456, A381900, A382093. %K A381522 nonn %O A381522 1,5 %A A381522 _Jwalin Bhatt_, Feb 26 2025