A381530 a(n) is the least k > 0 such that n / k contains a digit 1 in its decimal representation.
1, 2, 2, 3, 3, 4, 4, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3, 3, 3, 3, 4, 1, 2, 2, 3, 3, 4, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 5, 1, 2, 2, 4, 4, 4, 4, 5, 5, 5, 1, 5, 3, 3, 3, 5, 5, 5, 5, 1
Offset: 1
Examples
n = 7: 7/1 = 7 7/2 = 3.5 7/3 = 2.33... 7/4 = 1.75 contains a digit 1, thus a(7) = 4.
Programs
-
Mathematica
a[n_] := Module[{k = 1}, While[FreeQ[RealDigits[n/k][[1]], 1], k++]; k]; Array[a, 100] (* Amiram Eldar, Feb 26 2025 *)