cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381535 a(n) is the least nonnegative number that can be represented as the sum of two (not necessarily distinct) generalized pentagonal numbers in exactly n ways.

This page as a plain text file.
%I A381535 #9 Mar 01 2025 12:18:43
%S A381535 11,0,2,27,92,352,1002,16927,2302,7827,25052,220052,13352,1487552,
%T A381535 101752,195677,85177,137532552,173577
%N A381535 a(n) is the least nonnegative number that can be represented as the sum of two (not necessarily distinct) generalized pentagonal numbers in exactly n ways.
%C A381535 a(n) is the least k >= 0 such that A093518(k) = n.
%C A381535 a(17) > 5.4 * 10^7 if it exists.
%C A381535 From _Pontus von Brömssen_, Feb 28 2025: (Start)
%C A381535 a(19) > 3*10^9 if it exists.
%C A381535 After a(19), the following are all terms below 3*10^9:
%C A381535    n |    a(n)
%C A381535   ---+-----------
%C A381535   20 |     333802
%C A381535   21 |    4891927
%C A381535   22 |  391438802
%C A381535   23 |    2543802
%C A381535   24 |     494027
%C A381535   25 |   55039427
%C A381535   27 |    3764827
%C A381535   28 |    8345052
%C A381535   30 |    4339427
%C A381535   32 |    2737177
%C A381535   35 | 1375985677
%C A381535   36 |    6422352
%C A381535   38 |  429902552
%C A381535   40 |   12350677
%C A381535   41 |   85573502
%C A381535   42 |  108485677
%C A381535   45 |   94120677
%C A381535   48 |   29014077
%C A381535   50 |  733363177
%C A381535   54 |  120983227
%C A381535   56 |  308766927
%C A381535   60 |  160558802
%C A381535   63 | 2353016927
%C A381535   64 |  101275552
%C A381535   68 | 2139337552
%C A381535   72 |  344336877
%C A381535   80 |  725351927
%C A381535   96 | 1073520852
%C A381535 (End)
%F A381535 A093518(a(n)) = n.
%e A381535 a(3) = 27 because 27 = 1 + 26 = 5 + 22 = 12 + 15 has 3 representations as the sum of two generalized pentagonal numbers, and no smaller number works.
%p A381535 GP:= [0,seq(op([m*(3*m-1)/2, m*(3*m+1)/2]),m=1..2000)]:
%p A381535 N:= GP[-1]:
%p A381535 V:= Array(0..N, datatype=integer[4]):
%p A381535 for i from 1 to nops(GP) do
%p A381535 for j from 1 to i do
%p A381535    r:= GP[i]+GP[j];
%p A381535    if r > N then break fi;
%p A381535    V[r]:= V[r]+1
%p A381535 od od:
%p A381535 W:= Array(0..16): count:= 0:
%p A381535 for i from 1 to N while count < 17 do
%p A381535   v:= V[i]; if v <= 16 and W[v] = 0 then W[v]:= i; count:= count + 1 fi
%p A381535 od:
%p A381535 W[1]:= 0:
%p A381535 convert(W,list);
%Y A381535 Cf. A001318, A093518.
%K A381535 nonn,more
%O A381535 0,1
%A A381535 _Robert Israel_, Feb 26 2025
%E A381535 a(17)-a(18) from _Pontus von Brömssen_, Feb 28 2025