This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381540 #7 Mar 02 2025 22:34:30 %S A381540 1,2,3,4,5,7,9,11,12,13,17,18,19,20,23,24,25,28,29,31,37,40,41,43,44, %T A381540 45,47,48,49,50,52,53,54,56,59,61,63,67,68,71,72,73,75,76,79,80,83,88, %U A381540 89,92,97,98,99,101,103,104,107,108,109,112,113,116,117,121 %N A381540 Numbers appearing only once in A048767 (Look-and-Say partition of prime indices). %C A381540 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A381540 The Look-and-Say partition of a multiset or partition y is obtained by interchanging parts with multiplicities. For example, starting with (3,2,2,1,1) we get (2,2,2,1,1,1), the multiset union of ((1,1,1),(2,2),(2)). %C A381540 The conjugate of a Look-and-Say partition is a section-sum partition; see A381431, union A381432, count A239455. %e A381540 The terms together with their prime indices begin: %e A381540 1: {} %e A381540 2: {1} %e A381540 3: {2} %e A381540 4: {1,1} %e A381540 5: {3} %e A381540 7: {4} %e A381540 9: {2,2} %e A381540 11: {5} %e A381540 12: {1,1,2} %e A381540 13: {6} %e A381540 17: {7} %e A381540 18: {1,2,2} %e A381540 19: {8} %e A381540 20: {1,1,3} %e A381540 23: {9} %e A381540 24: {1,1,1,2} %t A381540 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A381540 hls[y_]:=Product[Prime[Count[y,x]]^x,{x,Union[y]}]; %t A381540 Select[Range[100],Count[hls/@IntegerPartitions[Total[prix[#]]],#]==1&] %Y A381540 In A048767: %Y A381540 - fixed points are A048768, A217605 %Y A381540 - conjugate is A381431, fixed points A000961, A000005 %Y A381540 - all numbers present are A351294, conjugate A381432 %Y A381540 - numbers missing are A351295, conjugate A381433 %Y A381540 - numbers appearing only once are A381540 (this), conjugate A381434 %Y A381540 - numbers appearing more than once are A381541, conjugate A381435 %Y A381540 A000040 lists the primes. %Y A381540 A055396 gives least prime index, greatest A061395. %Y A381540 A056239 adds up prime indices, row sums of A112798. %Y A381540 A122111 represents conjugation in terms of Heinz numbers. %Y A381540 A239455 counts Look-and-Say partitions, complement A351293. %Y A381540 A381440 lists Look-and-Say partition of prime indices, conjugate A381436. %Y A381540 Cf. A000720, A001222, A003557, A047966, A051903, A051904, A066328, A071178, A116861, A130091, A239964. %K A381540 nonn %O A381540 1,2 %A A381540 _Gus Wiseman_, Mar 02 2025