This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381541 #7 Mar 02 2025 22:45:57 %S A381541 8,16,27,32,64,81,96,125,128,144,160,192,216,224,243,256,288 %N A381541 Numbers appearing more than once in A048767 (Look-and-Say partition of prime indices). %C A381541 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A381541 The Look-and-Say partition of a multiset or partition y is obtained by interchanging parts with multiplicities. For example, starting with (3,2,2,1,1) we get (2,2,2,1,1,1), the multiset union of ((1,1,1),(2,2),(2)). %C A381541 The conjugate of a Look-and-Say partition is a section-sum partition; see A381431, union A381432, count A239455. %e A381541 The terms together with their prime indices begin: %e A381541 8: {1,1,1} %e A381541 16: {1,1,1,1} %e A381541 27: {2,2,2} %e A381541 32: {1,1,1,1,1} %e A381541 64: {1,1,1,1,1,1} %e A381541 81: {2,2,2,2} %e A381541 96: {1,1,1,1,1,2} %e A381541 125: {3,3,3} %e A381541 128: {1,1,1,1,1,1,1} %e A381541 144: {1,1,1,1,2,2} %e A381541 160: {1,1,1,1,1,3} %e A381541 192: {1,1,1,1,1,1,2} %e A381541 216: {1,1,1,2,2,2} %e A381541 224: {1,1,1,1,1,4} %e A381541 243: {2,2,2,2,2} %e A381541 256: {1,1,1,1,1,1,1,1} %e A381541 288: {1,1,1,1,1,2,2} %e A381541 For example, the term 96 appears in A048767 at positions 44 and 60, with prime indices: %e A381541 44: {1,1,5} %e A381541 60: {1,1,2,3} %t A381541 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A381541 hls[y_]:=Product[Prime[Count[y,x]]^x,{x,Union[y]}]; %t A381541 Select[Range[100],Count[hls/@IntegerPartitions[Total[prix[#]]],#]>1&] %Y A381541 In A048767: %Y A381541 - fixed points are A048768, A217605 %Y A381541 - conjugate is A381431, fixed points A000961, A000005 %Y A381541 - all numbers present are A351294, conjugate A381432 %Y A381541 - numbers missing are A351295, conjugate A381433 %Y A381541 - numbers appearing only once are A381540, conjugate A381434 %Y A381541 - numbers appearing more than once are A381541 (this), conjugate A381435 %Y A381541 A000040 lists the primes. %Y A381541 A055396 gives least prime index, greatest A061395. %Y A381541 A056239 adds up prime indices, row sums of A112798. %Y A381541 A122111 represents conjugation in terms of Heinz numbers. %Y A381541 A239455 counts Look-and-Say partitions, complement A351293. %Y A381541 A381440 lists Look-and-Say partitions of prime indices, conjugate A381436. %Y A381541 Cf. A000720, A001222, A003557, A047966, A051903, A051904, A066328, A071178, A116861, A130091, A239964. %K A381541 nonn,more %O A381541 1,1 %A A381541 _Gus Wiseman_, Mar 02 2025