This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381542 #6 Mar 24 2025 22:35:24 %S A381542 2,9,12,18,36,40,112,120,125,135,200,250,270,336,352,360,375,500,540, %T A381542 560,567,600,675,750,784,832,1000,1008,1056,1080,1125,1134,1350,1500, %U A381542 1680,1760,1800,2176,2250,2268,2352,2401,2464,2496,2673,2700,2800,2835,3000 %N A381542 Numbers > 1 whose greatest prime index equals their greatest prime multiplicity. %C A381542 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239. %F A381542 A061395(a(n)) = A051903(a(n)). %e A381542 The terms together with their prime indices begin: %e A381542 2: {1} %e A381542 9: {2,2} %e A381542 12: {1,1,2} %e A381542 18: {1,2,2} %e A381542 36: {1,1,2,2} %e A381542 40: {1,1,1,3} %e A381542 112: {1,1,1,1,4} %e A381542 120: {1,1,1,2,3} %e A381542 125: {3,3,3} %e A381542 135: {2,2,2,3} %e A381542 200: {1,1,1,3,3} %e A381542 250: {1,3,3,3} %e A381542 270: {1,2,2,2,3} %e A381542 336: {1,1,1,1,2,4} %e A381542 352: {1,1,1,1,1,5} %e A381542 360: {1,1,1,2,2,3} %t A381542 Select[Range[2,1000],PrimePi[FactorInteger[#][[-1,1]]]==Max@@FactorInteger[#][[All,2]]&] %Y A381542 Counting partitions by the LHS gives A008284, rank statistic A061395. %Y A381542 Counting partitions by the RHS gives A091602, rank statistic A051903. %Y A381542 For length instead of maximum we have A106529, counted by A047993 (balanced partitions). %Y A381542 For number of distinct factors instead of max index we have A212166, counted by A239964. %Y A381542 Partitions of this type are counted by A240312. %Y A381542 Including number of distinct parts gives A381543, counted by A382302. %Y A381542 A000005 counts divisors. %Y A381542 A000040 lists the primes, differences A001223. %Y A381542 A001222 counts prime factors, distinct A001221. %Y A381542 A051903 gives greatest prime exponent, least A051904. %Y A381542 A055396 gives least prime index, greatest A061395. %Y A381542 A056239 adds up prime indices, row sums of A112798. %Y A381542 A122111 represents partition conjugation in terms of Heinz numbers. %Y A381542 A381544 counts partitions without more ones than any other part, ranks A381439. %Y A381542 Cf. A000720, A047966, A048767, A130091, A317090, A381632. %K A381542 nonn %O A381542 1,1 %A A381542 _Gus Wiseman_, Mar 24 2025