This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A381544 #6 Mar 25 2025 08:57:42 %S A381544 0,0,1,2,3,4,7,8,13,17,24,30,45,54,75,97,127,160,212,263,342,427,541, %T A381544 672,851,1046,1307,1607,1989,2428,2993,3631,4443,5378,6533,7873,9527, %U A381544 11424,13752,16447,19701,23470,28016,33253,39537,46801,55428,65408,77238 %N A381544 Number of integer partitions of n not containing more ones than any other part. %e A381544 The a(2) = 1 through a(9) = 17 partitions: %e A381544 (2) (3) (4) (5) (6) (7) (8) (9) %e A381544 (21) (22) (32) (33) (43) (44) (54) %e A381544 (31) (41) (42) (52) (53) (63) %e A381544 (221) (51) (61) (62) (72) %e A381544 (222) (322) (71) (81) %e A381544 (321) (331) (332) (333) %e A381544 (2211) (421) (422) (432) %e A381544 (2221) (431) (441) %e A381544 (521) (522) %e A381544 (2222) (531) %e A381544 (3221) (621) %e A381544 (3311) (3222) %e A381544 (22211) (3321) %e A381544 (4221) %e A381544 (22221) %e A381544 (32211) %e A381544 (222111) %t A381544 Table[Length[Select[IntegerPartitions[n],Count[#,1]<=Max@@Length/@Split[DeleteCases[#,1]]&]],{n,0,30}] %Y A381544 The complement is counted by A241131, ranks A360013 = 2*A360015 (if we prepend 1). %Y A381544 The Heinz numbers of these partitions are A381439. %Y A381544 The case of equality is A382303, ranks A360014. %Y A381544 A000041 counts integer partitions, strict A000009. %Y A381544 A008284 counts partitions by length, strict A008289. %Y A381544 A047993 counts partitions with max part = length, ranks A106529. %Y A381544 A091602 counts partitions by the greatest multiplicity, rank statistic A051903. %Y A381544 A116598 counts ones in partitions, rank statistic A007814. %Y A381544 A239964 counts partitions with max multiplicity = length, ranks A212166. %Y A381544 A240312 counts partitions with max part = max multiplicity, ranks A381542. %Y A381544 A382302 counts partitions with max = max multiplicity = distinct length, ranks A381543. %Y A381544 Cf. A047966, A091605, A116861, A232697, A237984, A362608, A363724, A381079, A381437, A381438. %K A381544 nonn %O A381544 0,4 %A A381544 _Gus Wiseman_, Mar 24 2025