A381548 Numbers k such that k and k+1 both have an odd number of abundant divisors.
5984, 7424, 21735, 27404, 43064, 56924, 76544, 82004, 89775, 109395, 144584, 158235, 164835, 165375, 174824, 222704, 266475, 271215, 300104, 311024, 322335, 326655, 326864, 334304, 347984, 350175, 371924, 387584, 393855, 414315, 442035, 445004, 447524, 477224
Offset: 1
Keywords
Examples
5984 is a term since it has 9 abundant divisors (88, 176, 272, 352, 544, 748, 1496, 2992, 5984) and 5984 + 1 = 5985 has one abundant divisor (5985 itself). 21735 is a term since it has 3 abundant divisors (945, 7245, 21735) and 21735 + 1 = 21736 has 9 abundant divisors (88, 104, 572, 836, 1144, 1672, 1976, 10868, 21736).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
q[n_] := q[n] = OddQ[DivisorSum[n, 1 &, DivisorSigma[-1, #] > 2 &]]; Select[Range[500000], q[#] && q[#+1] &]
-
PARI
is1(k) = sumdiv(k, d, (sigma(d, -1) > 2)) % 2; list(lim) = forstep(k = 3, lim, 2, if(is1(k), if(is1(k-1), print1(k-1, ", ")); if(is1(k+1), print1(k, ", "))));
Comments