cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381575 Number of disjoint-union partial algebras with zero on [n].

This page as a plain text file.
%I A381575 #12 Mar 16 2025 10:08:38
%S A381575 1,2,7,68,4619,15621334
%N A381575 Number of disjoint-union partial algebras with zero on [n].
%C A381575 A disjoint-union partial algebra on a set S is a subset of the power set of S which is closed under union of disjoint sets.
%C A381575 A disjoint-union partial algebra with zero on a set S is a disjoint-union partial algebra on S which contains the empty set.
%C A381575 There are twice as many disjoint-union partial algebras on S as disjoint-union partial algebras with zero on S because the disjoint-union partial algebras without the empty set can be placed in bijection with those which have the empty set.
%D A381575 Hirsch, R., & McLean, B. (2017). Disjoint-union partial algebras. Logical Methods in Computer Science, 13.
%H A381575 Robin Hirsch and Brett McLean, <a href="https://arxiv.org/abs/1612.00252">Disjoint-union partial algebras</a>, arXiv:1612.00252 [math.RA], 2016-2017.
%o A381575 (Python)
%o A381575 def A381575(n):
%o A381575     cnt=0
%o A381575     for p in range(1,2**(2**n),2):
%o A381575         for a in range(1,2**n):
%o A381575             if p&(1<<a):
%o A381575                 for b in range(a+1,2**n):
%o A381575                     if p&(1<<b):
%o A381575                         if (a&b)==0 and not p&(1<<(a|b)):
%o A381575                             break
%o A381575                 else:
%o A381575                     continue
%o A381575                 break
%o A381575         else:
%o A381575             cnt+=1
%o A381575     return cnt
%o A381575 # _Bert Dobbelaere_, Mar 16 2025
%Y A381575 Cf. A380571, A381472 (unlabeled case).
%K A381575 nonn,more
%O A381575 0,2
%A A381575 _Peter J. Taylor_, Feb 28 2025