A381580 Numbers whose Chung-Graham representation (A381579) is palindromic.
0, 1, 2, 4, 9, 12, 15, 18, 22, 33, 44, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 145, 174, 203, 232, 261, 290, 319, 348, 378, 399, 420, 441, 462, 483, 504, 525, 546, 567, 588, 609, 630, 651, 672, 693, 714, 735, 756, 777, 798, 819, 840, 861, 882, 903, 924, 945, 966, 988
Offset: 1
Examples
The first 10 terms are: n a(n) A381579(a(n)) --------------------- 1 0 0 2 1 1 3 2 2 4 4 11 5 9 101 6 12 111 7 15 121 8 18 202 9 22 1001 10 33 1111
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[n_] := f[n] = Fibonacci[2*n]; q[n_] := Module[{s = 0, m = n, k}, While[m > 0, k = 1; While[m > f[k], k++]; If[m < f[k], k--]; If[m >= 2*f[k], s += 2*10^(k-1); m -= 2*f[k], s += 10^(k-1); m -= f[k]]]; PalindromeQ[s]]; Select[Range[0, 1000], q]
-
PARI
mx = 20; fvec = vector(mx, i, fibonacci(2*i)); f(n) = if(n <= mx, fvec[n], fibonacci(2*n)); isok(n) = {my(s = 0, m = n, k, d); while(m > 0, k = 1; while(m > f(k), k++); if(m < f(k), k--); if(m >= 2*f(k), s += 2*10^(k-1); m -= 2*f(k), s += 10^(k-1); m -= f(k))); d = digits(s); Vecrev(d) == d;}
Comments