cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381580 Numbers whose Chung-Graham representation (A381579) is palindromic.

Original entry on oeis.org

0, 1, 2, 4, 9, 12, 15, 18, 22, 33, 44, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 145, 174, 203, 232, 261, 290, 319, 348, 378, 399, 420, 441, 462, 483, 504, 525, 546, 567, 588, 609, 630, 651, 672, 693, 714, 735, 756, 777, 798, 819, 840, 861, 882, 903, 924, 945, 966, 988
Offset: 1

Views

Author

Amiram Eldar, Feb 28 2025

Keywords

Comments

The numbers of the form Fibonacci(2*k) + 1 (A055588) are all terms since A381579(A055588(0)) = 1, A381579(A055588(1)) = 2, and A381579(A055588(k)) = 10^(k-1)+1 (i.e., two 1's with k-2 0's between them) for k >= 2.

Examples

			The first 10 terms are:
   n  a(n) A381579(a(n))
   ---------------------
   1   0               0
   2   1               1
   3   2               2
   4   4              11
   5   9             101
   6  12             111
   7  15             121
   8  18             202
   9  22            1001
  10  33            1111
		

Crossrefs

Subsequence: A055588.
Similar sequences: A002113, A006995, A094202, A331191.

Programs

  • Mathematica
    f[n_] := f[n] = Fibonacci[2*n]; q[n_] := Module[{s = 0, m = n, k}, While[m > 0, k = 1; While[m > f[k], k++]; If[m < f[k], k--]; If[m >= 2*f[k], s += 2*10^(k-1); m -= 2*f[k], s += 10^(k-1); m -= f[k]]]; PalindromeQ[s]]; Select[Range[0, 1000], q]
  • PARI
    mx = 20; fvec = vector(mx, i, fibonacci(2*i)); f(n) = if(n <= mx, fvec[n], fibonacci(2*n));
    isok(n) = {my(s = 0, m = n, k, d); while(m > 0, k = 1; while(m > f(k), k++); if(m < f(k), k--); if(m >= 2*f(k), s += 2*10^(k-1); m -= 2*f(k), s += 10^(k-1); m -= f(k))); d = digits(s); Vecrev(d) == d;}