A381581 Numbers divisible by the sum of the digits in their Chung-Graham representation (A381579).
1, 2, 3, 4, 6, 8, 12, 16, 20, 21, 22, 24, 27, 28, 30, 40, 42, 44, 45, 48, 55, 56, 57, 58, 60, 66, 70, 72, 75, 76, 80, 84, 90, 92, 95, 96, 100, 102, 110, 111, 112, 115, 116, 120, 132, 135, 138, 140, 144, 150, 152, 153, 156, 168, 170, 175, 176, 180, 186, 190, 195, 198
Offset: 1
Examples
4 is a term since A291711(4) = 1 divides 4. 6 is a term since A291711(6) = 2 divides 6.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[n_] := f[n] = Fibonacci[2*n]; q[n_] := Module[{s = 0, m = n, k}, While[m > 0, k = 1; While[m > f[k], k++]; If[m < f[k], k--]; If[m >= 2*f[k], s += 2; m -= 2*f[k], s++; m -= f[k]]]; Divisible[n, s]]; Select[Range[200], q]
-
PARI
mx = 20; fvec = vector(mx, i, fibonacci(2*i)); f(n) = if(n <= mx, fvec[n], fibonacci(2*n)); isok(n) = {my(s = 0, m = n, k); while(m > 0, k = 1; while(m > f(k), k++); if(m < f(k), k--); if(m >= 2*f(k), s += 2; m -= 2*f(k), s++; m -= f(k))); !(n % s);}
Comments