cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381583 Starts of runs of 3 consecutive integers that are all terms in A381581.

Original entry on oeis.org

1, 2, 20, 55, 56, 110, 304, 364, 398, 846, 1024, 1084, 1744, 1854, 2044, 2104, 2105, 2527, 2824, 2862, 3870, 4374, 5222, 5223, 5243, 5718, 5928, 6488, 6784, 6844, 6894, 6978, 7142, 7924, 10590, 11240, 11889, 11975, 12248, 14284, 14915, 16638, 17710, 17714, 17824
Offset: 1

Views

Author

Amiram Eldar, Feb 28 2025

Keywords

Comments

If k is congruent to 1 or 5 mod 12 (A087445), then A001906(k) = Fibonacci(2*k) is a term.

Examples

			1 is a term since A291711(1) = 1 divides 1, A291711(2) = 2 divides 2, and A291711(3) = 1 divides 3.
20 is a term since A291711(20) = 4 divides 20, A291711(21) = 1 divides 21, and A291711(22) = 2 divides 22.
		

Crossrefs

Subsequence of A381581 and A381582.
Subsequences: A381584, A381585.
Similar sequences: A154701, A328210, A330932, A351721.

Programs

  • Mathematica
    f[n_] := f[n] = Fibonacci[2*n]; q[n_] := q[n] = Module[{s = 0, m = n, k}, While[m > 0, k = 1; While[m > f[k], k++]; If[m < f[k], k--]; If[m >= 2*f[k], s += 2; m -= 2*f[k], s++; m -= f[k]]]; Divisible[n, s]]; seq[count_, nConsec_] := Module[{cn = q /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ cn, c++; AppendTo[s, k - nConsec]]; cn = Join[Rest[cn], {q[k]}]; k++]; s]; seq[45, 3]
  • PARI
    mx = 20; fvec = vector(mx, i, fibonacci(2*i)); f(n) = if(n <= mx, fvec[n], fibonacci(2*n));
    is1(n) = {my(s = 0, m = n, k); while(m > 0, k = 1; while(m > f(k), k++); if(m < f(k), k--); if(m >= 2*f(k), s += 2; m -= 2*f(k), s++; m -= f(k))); !(n % s);}
    list(lim) = {my(q1 = is1(1), q2 = is1(2), q3); for(k = 3, lim, q3 = is1(k); if(q1 && q2 && q3, print1(k-2, ", ")); q1 = q2; q2 = q3);}